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ABSTRACT: The performance of sulfonated-titanomagnetite nanoparticles (Fe3-xTixO4-SO3H NPs) 

as useful and recyclable nanocatalyst for the synthesis of dihydroquinazoline and hexahydroquinoline 

derivatives through multi-component reaction approach in solvent-free condition were investigated 

extensively. The successful synthesis of mentioned derivatives was confirmed using Fourier-

Transform InfraRed (FT-IR) as well as 1H/13C nuclear magnetic resonance (NMR) spectroscopies. 

According to the results, the employed nanocatalyst has some advantages such as high catalytic 

activity in short reaction time, good-to-excellent isolated yields in most cases, easy workup process, 

smooth processing feature of the reactions, facile recovery using an external magnetic field,  and  

re-usability for four times without significant loss in its activity. 
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INTRODUCTION 

The continuous attempts for developing versatile and 

impressive strategies for the synthesis of heterocyclic 

compounds has always been a common subject in the 

synthetic community. The development of efficient 

catalysts for the facile synthesis of organic compounds 

under mild condition with high yield has a progressive 

research area in the field [1-10]. In this context, metal 

oxide NanoParticles (NPs) can be considered as potential  

 

 

 

candidates for developing efficient catalysts mainly due to 

inherent physicochemical properties, including high 

activity, recycling ability, long-term stability and high 

oxidation power [11-22]. Titanomagnetite (Fe3-xTixO4) 

NPs include magnetic ferrites, titanium and oxygen elements 

with a spinel structure [23]. These NPs are more active  

and more efficient than those of the similar metal oxides due to 

the high oxidation number (IV) for titanium element,  

 

 

 

* To whom correspondence should be addressed. 

+ E-mail: m_jaymand@yahoo.com    ;    m.jaymand@gmail.com    ;    mehdi.jaymand@kums.ac.ir 

1021-9986/2021/2/367-381     15/$/6.05 

 



Iran. J. Chem. Chem. Eng. Azarifar D. et al. Vol. 40, No. 2, 2021 

 

368                                                                                                                                                                  Research Article 

 

 

 

 

 
Scheme 1: Three-component synthesis of 2,3-dihydroquinazoline (1H)-4-ones catalyzed by Fe3-xTixO4-SO3H NPs. 

 

 

 

 

 

 

 

Scheme 2: Multi-component synthesis of 2-amino-3-cyano-hexahydroquinolines catalyzed by Fe3-xTixO4-SO3H NPs. 

 

which lead to a large number of hydroxyl groups on the 

surface of Fe3-xTixO4 NPs for further modification [1, 23]. 

Dihydroquinazolin-4(1H)-ones are an important class 

of heterocycle compounds with a wide range of 

pharmacological and biological activities. These organic 

compounds are known to be anti-tumor agents, diuretics, 

plant-growth regulators, herbicidal agents, anti-

convulsants, and anti-fertility [24-31]. These compounds 

can be easily oxidized to their quinazolin-4(3H)-one 

analogues [32-34], which are important biologically active 

heterocyclic compounds and are found in some natural 

products [35-38]. According to importance of these 

compounds as biologically active reagents, there are 

several synthetic strategies, including cyclization of  

O-acylaminobenzamides [39], amidation of  

2-aminobenzonitrile followed by oxidative ring closure 

[40], solid-phase synthesis of 2-arylamino-substituted 

quinazolinones [41], synthesis from isatoic anhydrides and 

"Schiff-Bases" [42], reduction of the azide functionality 

[43], and Pd-catalyzed heterocyclization of nitroenes [44] 

have been introduced for the synthesis of quinazolinone 

derivatives. On the other hand, hexahydroquinolines are 

biologically active heterocyclic compounds and exhibited 

anti-cancer, anti-inflammatory, anti-bacterial, anti-

malarial, anti-asthmatic, anti-hypersensitive, and tyrosine 

kinase inhibitory features [1, 34, 45]. 

In this contribution, a facile strategy is reported  

for the synthesis of quinazolinone and quinolone derivatives 

through multi-component reactions under catalysis  

of sulfonated-titanomagnetite nanoparticles (Fe3-xTixO4-

SO3H NPs; has been synthesized in our previous work [1]) 

under solvent-free conditions (Schemes 1 and 2).  

The reactions were optimized in terms of catalyst loading, 

time, temperature, and solvent.  

 

EXPERIMENTAL SECTION 

Materials 

Chemical reagents as well as solvents in high purity 

were purchased from Merck (Darmstadt, Germany) and 

used without further purification. The nanocatalyst  

(Fe3-xTixO4-SO3H NPs) was synthesized in our laboratory [1].  

 

Instrumentation 

FT-IR spectra of the samples were provided using  

KBr pellets on a Shimadzu 435-U-04 FTIR (Kyoto, Japan) 

spectrometer. 1H NMR spectra were performed on 90 and 

250 MHz BRUKER AVANCE instruments using DSMO-

d6 as solvent at room temperature. Melting points  

were determined in open capillaries using a BUCHI 510 

apparatus (Flawil, Switzerland). 

 

Synthesis of Fe3-xTixO4 MNPs 

The Fe3-xTixO4-SO3H NPs were synthesized according 

to previously reported procedure [1]. In brief, FeSO4.7H2O 

(3.806 g) was dissolved in distilled water (18.5 mL) and 

transferred into a round-bottomed reactor equipped  

with a condenser. The pH of the solution was then adjusted to < 1 

through the addition of a HCl solution (1 mol/L). 

Afterward, TiCl4 (1.6 mL) and hydrazine monohydrate (4 mL) 

were added, respectively. The resulted mixture was 

refluxed at 90 °C under an inert atmosphere (N2 gass)  

for 30 min followed by consecutive drop-wise addition  
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Table 1: Optimization of catalyst amount. 

Entry Catalyst (g) Temperature (°C) Yield (%) 

1 0.01 150 68 

2 0.02 150 56 

3 0.03 80 89 

4 0.05 120 71 

 

Table 2: Optimization of reaction condition for the synthesis of 2,3-dihydroquinazoline (1H)-4-ones. 

Entry Catalyst (g) Solvent Temperature (°C) Time (min) Yield (%) 

1 - Solvent-free 80 120 18 

2 0.03 Solvent-free 60 130 60 

3 0.03 Solvent-free 80 90 89 

4 0.03 Solvent-free 90 90 68 

5 0.03 Solvent-free 100 90 74 

6 0.03 Solvent-free 110 75 71 

7 0.03 Water Reflux 150 - 

8 0.03 EtOH Reflux 150 47 

9 0.03 Water/EtOH (1:1) Reflux 150 35 

10 0.03 Water/EtOH (1:4) r.t 150 43 

11 0.03 EtOH r.t 180 17 

12 0.03 Water r.t 180 - 

ETOH: ethanol 

 

of the solutions of NaOH (4.00 g) and NaNO3 (2.00 g)  

in deionized water (18.5 mL) under vigorous stirring.  

At the end of this period, the resulted mixture was cooled 

to room temperature, the precipitated Fe3-xTixO4-SO3H 

NPs (2.8 g) were magnetically collected using a magnet 

bar, washed with deionized water several times, and dried 

in reduced pressure. 

 

Synthesis of TMSPU-Fe3-xTixO4 MNPs  

In a typical experiment, the synthesized Fe3-xTixO4 NPs 

(1.00 g) were suspended in dried xylene (30 mL)  

by sonication for 30 minutes. Afterward, 3-

chloropropyltrimethoxysilyl urea silan coupling agent 

(TMSPU; 2 mL, 10 mmol) was added to the flask,  

and the reaction mixture was refluxed under N2 

atmosphere for 24 hours with vigorous stirring at 80 °C. 

At the end of this time, the flask was cooled to room 

temperature in order to precipitate the TMSPU-modified 

MNPs, which were magnetically separated, washed 

several times with ethanol and dried in vacuum [1]. 

 

Synthesis of Fe3-xTixO4-SO3H 

The synthesized TMSPU-Fe3-xTixO4 NPs (0.80 g)  

in CH2Cl2 (20 mL) was sonicated for about 30 minutes. 

Then, chlorosulfonic acid (0.6 mL, 9 mmol) was added 

drop-wise during 1 hour at room temperature under 

vigorous stirring followed by shaking the resulted mixture 

for another 1 hour. The precipitated Fe3-xTixO4-SO3H 

MNPs were then magnetically separated from the reaction 

mixture, washed consecutively with CH2Cl2 and ethanol, 

and dried in reduced pressure at room temperature.  

The number of SO3H groups per gram of the support NPs  
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Table 3: Three-component synthesis of 2,3-dihydroquinazoline (1H)-4-ones catalyzed by Fe3-xTixO4-SO3H NPs. 

N
H

O

O

O

Ar
1
CHO Ar

2
NH

2

Solvent-Free
N
H

N

O

Ar
2

Ar
1

+ +

80oC

Fe3-xTiOxO4-SO3H NPs

 

Entry Product Time (min) Yield (%) 

M.P. (°C) 

Found Reported 

1 
N
H

N

Cl
O

 

80 89 216-220 217-219[46] 

2 

N
H

N

O
Cl

Cl 

75 91 243-247 248-250[47] 

3 
N
H

N

Cl
O

F

 

50 75 194-205 - 

4 

N
H

N

O
Cl

F  

65 78 240-245 - 

5 
N
H

N

Cl
O

Br

 

85 68 210-216 - 

6 
N
H

N

Cl
O

Br  

80 87 236-242 - 

7 
N
H

N

Cl
O

 

70 73 254-259 - 

 

8 N
H

N

Cl
O

OCH3  

75 71 236-242 245-247[48] 
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Table 3: Three-component synthesis of 2,3-dihydroquinazoline (1H)-4-ones catalyzed by Fe3-xTixO4-SO3H NPs. (…) 
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9 
N
H

N
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60 94 173-178 197-198[46] 

10 
N
H

N

O

Cl  

55 87 186-192 - 

11 
N
H

N

O

Br  

65 89 150-155 - 

12 
N
H

N

O

OCH3 

75 85 263-265 247-249[46] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3: Proposed mechanism for the synthesis of 2,3-dihydroquinazoline (1H)-4-ones catalyzed by Fe3-xTixO4-SO3H NPs. 
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Table 4: Optimization of catalyst for the synthesis of 2-amino-3-cyano-hexahydroquinolines. 

Entry Catalyst (g) Temperature (°C) Yield (%) 

1 - 80 21 

2 0.01 60 71 

3 0.02 70 83 

4 0.03 70 90 

 

Table 5: Optimization of reaction conditions for the synthesis of 2-amino-3-cyano-hexahydroquinolines. 

Entry Catalyst (g) Solvent Temperature (°C) Time1 (min) Time2 (min) Yield (%) 

1 - Solvent-free 70 45 80 21 

2 0.03 Solvent-free 60 35 45 78 

3 0.03 Solvent-free 70 60 25 90 

4 0.03 Solvent-free 80 30 20 65 

5 0.03 Solvent-free Reflux 45 20 63 

6 0.03 H2O Reflux 40 60 18 

7 0.03 EtOH Reflux 25 60 65 

8 0.03 EtOH/ H2O (1:1) Reflux 45 75 58 

9 0.03 EtOH/ H2O (1:1) Reflux 60 60 61 

10 0.03 EtOH Reflux 55 120 43 

 
was found to be 4.2 mmol through acid–base titration 

(Scheme 5) [1]. 

 

General procedure for the synthesis of 2,3-

dihydroquinazoline (1H)-4-ones catalyzed by Fe3-xTixO4-

SO3H NPs 

The aldehyde (1 mmol), amine (1 mmol) and isatoic 

anhydride (1 mmol) were added to a reactor tube 

containing Fe3-xTixO4-SO3H NPs (0.03g) as the catalyst. 

The reaction mixture was warmed to 80 °C in the solvent-

free condition and the progress of the reaction  

was monitored by thin layer chromatography (TLC) until 

total or steady conversion of the starting materials. After 

ensuring the completion of the reaction, hot ethanol (5 mL) 

was added to the resulting mixture and the catalyst  

was separated from the reaction mixture using an external 

magnet, followed by filtration through a filter paper  

and washing with additional ethanol (5 mL). The crude 

product obtained after evaporation of the solvent,  

and was purified by re-crystallization in absolute  

ethanol. 

 

General procedure for the synthesis of 2-amino-3-cyano-

hexahydroquinolines catalyzed by Fe3-xTixO4-SO3H NPs 

A mixture of dimedone (1 mmol), ammonium acetate 

(1 mmol), malononitrile (1 mmol) and aldehyde (1 mmol) 

was added to a reactor tube containing Fe3-xTixO4-SO3H 

NPs (0.03 g) as the catalyst. The reaction mixture was 

stirred at 70°C and monitored by TLC until total or steady 

conversion of the starting materials. After completing  

the reaction, the appropriate amount of hot ethanol (8 mL) 

was added to the mixture and was stirred until complete 

dissolution of the formed precipitate. The catalyst  

was separated from the reaction mixture using an external 

magnet. The resulting mixture was cooled to room 

temperature, then distilled water (10 mL) was added to the 

flask and filtered through a filter paper. After drying  

the precipitate at room temperature, it was washed  
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Table 6: Multi-component synthesis of 2-amino-3-cyano-hexahydroquinolines catalyzed by Fe3-xTixO4-SO3H NPs. 

Solvent-Free

O O

ArCHO NH
4
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N
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O Ar
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+

70oC
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Entry Product Time (min) Yield (%) M.P. (°C) 

1 

N
H

O
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25 90 266-272 277-280[49] 

2 

N
H

O
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2
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OCH3

 

20 72 278-284 285-287[ 50] 

3 

N
H

O

NH
2

Cl

Cl
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12 70 261-268 192-194[51] 

4 

N
H

O

NH
2

Cl
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15 81 287-290 288-290[50] 

5 

N
H

O
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2

CN

 

18 76 296-302 293-296[50] 

6 

N
H

O

NH
2

F

CN

 

10 97 281-289 298-299[50] 

7 

N
H

O

NH
2

CN

NO3

 

10 86 274-281 280-281[50] 

 



Iran. J. Chem. Chem. Eng. Azarifar D. et al. Vol. 40, No. 2, 2021 

 

374                                                                                                                                                                  Research Article 

Table 6: Multi-component synthesis of 2-amino-3-cyano-hexahydroquinolines catalyzed by Fe3-xTixO4-SO3H NPs. (Continued) 

Solvent-Free
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4
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N
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O Ar
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2
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+
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8 

N
H

O
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2
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25 71 268-273 283-286[49] 

9 

N
H

O

NH
2
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CN

 

25 68 256-264 261-265[49] 

10 

N
H

O

NH
2

Br

CN

 

15 78 298-308 297-299[50] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4: Proposed mechanism for the synthesis of 2-amino-3-cyano-hexahydroquinolines catalyzed by Fe3-xTixO4-SO3H NPs. 
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Table 7: The efficiency of the Fe3-xTixO4-SO3H nanocatalyst in comparison with some other catalyst that employed  

for the synthesis of dihydroquinazoline. 

Ref Yield (%) Time (h) T (°C) Condition Catalyst Sample 

Current 89 1.20 80 Solvent-free Fe3-xTixO4 -SO3H 

N
H

N

Cl
O

 

46 85 5 100 Reflux (H20) Fe3O4 NPs 

47 88 11 70 - Starch(aq):ETOH 

52 70 3 100 Water (reflux) [bmim]HSO4 

Current 91 1.15 80 Solvent-free Fe3-xTixO4 -SO3H 

N
H

N

Cl
O

Cl  

47 92 4 50 - Starch(aq):ETOH 

52 72 4 100 Water (reflux) [bmim]HSO4 

Current 71 1.15 80 Solvent-free Fe3-xTixO4 -SO3H 

N
H

N

Cl
O

OCH3  

52 78 3 100 Water (reflux) [bmim]HSO4 

Current 94 1 80 Solvent-free Fe3-xTixO4 -SO3H 

N
H

N

O

 

46 80 5 100 Reflux Fe3O4 NPs 

Current 87 1 88 Solvent-free Fe3-xTixO4 -SO3H 

N
H

N

O

Cl  

47 79 9 70 - Starch(aq):ETOH 

Current 71 1.20 80 Solvent-free Fe3-xTixO4 -SO3H 

N
H

N

O

OCH3 

46 73 5 100 Reflux Fe3O4 NPs 
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Table 8: The efficiency of the Fe3-xTixO4-SO3H nanocatalyst in comparison with some other catalyst that employed  

for the synthesis of hexahydroquinoline. 

Ref Yield (%) Time (min) T (°C) Condition Catalyst Sample 

Current 90 25 70 Solvent-free H3SO-4 OxTix-3Fe 

N
H

O

NH
2

CN

 

50 84 70 - Reflux (water) OAc4NH 

53 88 15 25 Solvent-free OAc4NH 

54 70 300 - Reflux OAc4NH 

Current 72 20 70 Solvent-free H3SO-4 OxTix-3Fe 

N
H

O

NH
2

CN

OCH3

 

50 83 80 100 Reflux (water) OAc/AcOH4NH 

Current 97 10 70 Solvent-free H3SO- 4OxTix-3Fe 

N
H

O

NH
2

F

CN

 

50 90 57 100 Reflux (water) OAc4NH 

49 88 15 75 Solvent-free Fe3-xTixO4 @SPDETATSA MNPs 

55 95 70 80 Reflux Glycerol-promoted catalyst-free 

Current 86 10 70 Solvent-free H3SO-4 TixOx-3Fe 

N
H

O

NH
2

CN

NO3

 

50 88 57 100 Reflux OAc4NH 

54 70 100 - Reflux OAc4NH 

 

with ethyl acetate and the product was further purified 

through re-crystallized from absolute ethanol. 

 

RESULTS AND DISCUSSION 

Synthesis of 2,3-dihydroquinazoline (1H)-4-ones 

Initially, in order to optimize the reaction condition  

the three-component reaction of isatoic anhydride, 

benzaldehyde, and aniline was selected as a simple model 

substrate through the catalysis by different amounts of the 

Fe3-xTixO4-SO3H NPs in different solvents such as water 

and ethanol at various temperatures (Tables 1 and 2).  

As the results, it was found that solvent-free condition and 

employing 0.03 g of nanocatalyst at 80°C are the 

optimized conditions for the above mentioned reaction. 

So, a wide range of 2,3-dihydroquinazoline (1H)-4-ones 

were synthesized in modest-to-high isolated yields under 

optimized condition (Table 2).  

As shown in Table 3, the direct three-component 

reactions worked well with a variety of arylaldehydes 

including both bearing electron-withdrawing and electron-

donating groups and the desired compounds were obtained 

in good to excellent yields (Table 3, entries 1–12).  
 



Iran. J. Chem. Chem. Eng. Sulfonated-Titanomagnetite Nanoparticles ...  Vol. 40, No. 2, 2021 

 

Research Article                                                                                                                                                                  377 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Recyclability of the Fe3-xTixO4-SO3H nanocatalyst for 

the model reaction in the synthesis of dihydroquinazolines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Recyclability of the Fe3-xTixO4-SO3H nanocatalyst for 

the model reaction in the synthesis of hexahydroquinolines.. 

 

It is worth noting that under the mentioned optimized 

condition the reaction did not proceed by aliphatic 

aldehydes as the starting material. 

According to our observation of evolvement in the reaction 

conditions and other reported mechanisms,  

we have suggested a mechanism for the Fe3-xTixO4-SO3H 

NPs-catalyzed synthesis of 2,3-dihydroquinazoline (1H)-

4-ones as shown in Scheme 3. The Fe3-xTixO4-SO3H 

NPsplays pivotal role at all stages of the reaction. First,  

the sulfonic acid group interacted with steric group 

(position 4) of the anhydride molecule and facilitates  

the aniline nucleophilic attack to give the intermediate 

number (1), which in the next step with the loss of intermediate 

carbon dioxide amide (2) is formed. The activation of the 

carbonyl group of aromatic aldehyde facilitate  

the nucleophilic attack of the amine group in the 

intermediate (2) to aromatic aldehyde. In the following, 

with the removal of water an intermediate amine (3)  

is formed. Finally, by an intramolecular cyclization 

process the desired product is formed.  

 

Synthesis of 2-amino-3-cyano-hexahydroquinolines 

First, in order to optimize the reaction conditions a one-

pot reaction between benzaldehyde, ammonium acetate, 

malononitrile and dimedone was tested as the model 

reaction under different conditions in terms of temperature 

and solvent. The results of this study are summarized  

in Tables 4 and 5. As seen in these tables, the best conditions 

are the application of 0.03 g of nanocatalyst in solvent-free 

condition at 70 °C. Then, the synthesis of various 

derivatives of 2-amino-3-cyano-hexahydroquinolines 

were investigated under mentioned optimal condition.  

For this purpose, under the optimized condition a number 

of aromatic aldehydes were allowed to undergo  

multi-component reaction with dimedone, malononitrile, 

and ammonium acetate in the presence of Fe3-xTixO4-SO3H 

NPs (0.03 g) as the catalyst under solvent-free condition  

at 70 °C (Table 5). The results obtained are presented  

in Table 6. All the electron-rich and electron-deficient 

aldehydes worked well leading to excellent yields of  

the corresponding products.  

In accordance with the possible mechanism as shown 

in Scheme 4, in the first step, ammonia produced from 

ammonium acetate under influence of the catalyst attacks 

the carbonyl dimedone group and forms the compound (1). 

In the next step, the activated malononitrile attacks  
 

to the carbonyl group of aldehyde and produces an arylidene 

malononitrile intermediate (2). The third stage is also 

affected by the acidic feature of the catalyst. At this stage, 

the compound (1) produced in the first stage attacks the 

intermediate (2) and creates an imine intermediate (3), 

which ultimately leads to the formation of the final product 

during an intramolecular cyclization process. 

 

Catalyst and method efficiency 

The efficiency of the Fe3-xTixO4-SO3H nanocatalyst  

as well as designed experimental method in comparison 

with some related studies for the synthesis of 

dihydroquinazoline and hexahydroquinoline derivatives 

are summarized in Tables 7 and 8, respectively. As seen, 

in the case of some products the developed Fe3-xTixO4-

SO3H nanocatalyst and designed experimental process  
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Scheme 5: The overall strategy for the synthesis of Fe3-xTixO4-SO3H NPs. 

 

exhibited higher efficiency in comparison with some 

others that reported in the literatures. 

 

Recyclability of the nanocatalyst 

The synthesized Fe3-xTixO4-SO3H NPs were used  

for four times without significant loss in its activity.  

For this purpose, the potential recyclability and reusability 

of the nanocatalyst were investigated for the both model 

reaction in the synthesis of dihydroquinazoline and 

hexahydroquinoline derivatives. The nanocatalyst  

was recovered simply using an external magnet, washed 

with ethyl acetate (10 mL) and ethanol (10 mL), dried  

in vacuum oven at 50°C, and reused in the next four 

subsequent runs. The data summarized in Figs. 1 and 2, 

confirms the practical recyclability of the fabricated 

nanocatalyst without significant loss in its activity. 

 

CONCLUSIONS 

The multi-component synthesis of a variety of  

2,3-dihydroquinazoline (1H)-4-ones has been effectively 

accomplished from isatoic anhydride, aldehyde and amine 

using Fe3-xTixO4-SO3H NPs as the catalyst. This catalyst 

has also been employed for the synthesis of 2-amino-3-

cyano-hexahydroquinolines by reaction between 

dimedone, ammonium acetate, malononitrile and aromatic 

aldehydes. Both synthetic strategies are accomplished 

through one-pot reactions in solvent-free condition  

and the desired products were synthesized in good to 

excellentyields in most cases. These methods have some 

advantages in comparison with the reported approaches 

such as easy recoverability of the catalyst by external 

magnetic field, high catalytic activity, easy work up 

process, green reaction condition, wide substrate scope, 

short reaction time as well as cost benefit process.  
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