Molybdenum-Schiff Base Complex Immobilized on Magnetite Nanoparticles as a Reusable Epoxidation Catalyst

Document Type: Research Article

Authors

1 Faculty of Chemistry, Kharazmi University, Tehran, I.R. IRAN

2 Faculty of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, I.R. IRAN

Abstract

The surface of magnetite nanoparticles as nano-sized solid support was modified with a molybdenum-Schiff base complex to prepare an easily separable heterogeneous catalyst for the epoxidation of olefins. Characterization techniques such as Fourier transform infrared and inductively coupled plasma optical emission spectroscopies, X-ray diffraction, vibrating sample magnetometry, scanning, and transmission electron microscopies indicated the presence of molybdenum-Schiff base complex and a magnetite core in the catalyst. The magnetite nanoparticles supported Mo catalyst exhibited high catalytic activity and selectivity toward the epoxidation of olefins and was easily recovered from the reaction mixture by magnetic separation to be utilized for subsequent reactions. The catalyst showed reusability for three times without significant loss of activity.

Keywords

Main Subjects


[1] Valkenberg M.H., Holderich W.F., Preparation and Use of Hybrid Organic–Inorganic Catalysts, Catal. Rev. 44: 321-374 (2002).

[2] Shylesh S., Jia M., Thiel W.R., Recent Progress in the Heterogenization of Complexes for Single-Site Epoxidation Catalysis, Eur. J. Inorg. Chem., 28: 4395-4410 (2010).

[3] Sreedhar B., Radhika P., Neelima B., Hebalkar N., Regioselective Ring Opening of Epoxides with Amines Using Monodispersed Silica Nanoparticles in Water, J. Mol. Catal. A: Chem. 272: 159-163 (2007).

[4] Hoffmann F., Cornelius M., Morell J., Froba M., Silica-Based Mesoporous Organic–Inorganic Hybrid Materials, Angew. Chem. Int. Ed., 45: 3216-3251 (2006). 

[5] Ge J., Huynh T., Hu Y., Yin Y., Hierarchical Magnetite/Silica Nanoassemblies as Magnetically Recoverable Catalyst-Supports, Nano Lett., 8: 931-934 (2008).

[6] Shao D., Xia A., Hu J., Wang C., Yu W., Monodispersed Magnetite/Silica Composite Microspheres: Preparation and Application for Plasmid DNA Purification, Colloids Surf. A: Physicochem. Eng. Aspects, 322: 61-65 (2008).

[7] Qiao R., Yang C., Gao M., Superparamagnetic Iron Oxide Nanoparticles: from Preparations to in Vivo MRI Applications, J. Mater. Chem., 19: 6274-6293 (2009).

[8] Sun C., Lee J.S.H., Zhang M., Magnetic Nanoparticles in MR Imaging and Drug Delivery, Adv. Drug Delivery Rev., 60: 1252-1265 (2008).

[9] Ichiyanagi Y., Moritake S., Taira S., Setou M., Functional Magnetic Nanoparticles for Medical Application, J. Magn. Magn. Mater., 310: 2877-2879 (2007).

[10] Polshettiwar V., Luque R., Fihri A., Zhu H., Bouhrara M., Basset J.M., Magnetically Recoverable Nanocatalysts, Chem. Rev., 111: 3036-3075 (2011).

[11] Shylesh S., Schnemann V., Thiel W.R., Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis, Angew. Chem. Int. Ed., 49: 3428-3459 (2010).

[12] Gawande M.B., Branco P.S., Varma R.S., Nano-Magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies, Chem. Soc. Rev., 42: 3371-3393 (2013).

[13] Hille R., The Mononuclear Molybdenum Enzymes, Chem. Rev. 96: 2757-2816 (1996).

[14] Burgess B.K., Low D.J., Mechanism of Molybdenum Nitrogenase, Chem. Rev., 96: 2983-3011 (1996).

[15] Mol J.C., Industrial Applications of Olefin Metathesis, J. Mol. Catal. A: Chem., 213: 39-45 (2004).

[16] Handzlik J., Ogonowski J., Stoch J., Mikolajczyk M., Comparison of Metathesis Activity of Catalysts Prepared by Anchoring of MoO2(acac)2 on Various Supports, Catal. Lett., 101: 65-69 (2005).

[17] Jorgensen K.A., Transition-Metal-Catalyzed Epoxidations, Chem. Rev., 89: 431-458 (1989).

[18] Oyama S.T. (Ed.), “Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis”, Elsevier, Amsterdam (2008).

[19] Najafi M., Abbasi A., Masteri-Farahani M., Rodrigues V.H., A Novel Inorganic–Organic Hybrid Compound Based on Heteropolyoxomolybdate Nanocluster as Selective Catalyst for Epoxidation of Cyclooctene, Inorg. Chem. Comm., 46: 251-253 (2014).

[20] Abednatanzi S., Abbasi A., Masteri-Farahani M., Post-synthetic Modification of Nanoporous Cu3(BTC)2 Metal-Organic Framework via Immobilization of a Molybdenum Complex for Selective Epoxidation, J.  Mol. Catal. A:  Chem., 399: 10-17 (2015).

[21] Masteri-Farahani M., Farzaneh F., M. Ghandi, Synthesis and Characterization of Molybdenum Complexes with Bidentate Schiff Base Ligands within Nanoreactors of MCM-41 as Epoxidation Catalysts, J. Mol. Catal. A: Chem., 248: 53-60 (2006).

[25] Chen G.J.J., Mc Donald J.W., Newton W.E., Synthesis of Mo(IV) and Mo(V) Complexes Using Oxo Abstraction by Phosphines Mechanistic Implications, Inorg. Chem. 15: 2612-2615 (1976).