A Theoretical Approach to New Triplet and Quintet (nitrenoethynyl)alkylmethylenes, (nitrenoethynyl)alkylsilylenes, (nitrenoethynyl)alkylgermylenes

Document Type : Research Article


1 Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, I.R. IRAN

2 Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, I.R. IRAN


Experimentally unreachable reactive intermediates of triplet and quintet (nitrenoethynyl)-X-methylenes, (nitrenoethynyl)-X-silylenes, and (nitrenoethynyl)-X-germylenes were compared and contrasted at B3LYP, M06-2X, WB97XD, HF, MP2, MP4, CCSD, and QCISD(T) levels with 6-311++G(d,p) basis set (X–M–C≡C–N; M=C, Si, and Ge; X = H (1), Me (2), Et (3), Pr (4), i-Pr (5),  and t-Bu (6)). The effect of small and bulky groups on these acetylene linked reactive intermediates were studied. All triplet (nitrenoethynyl)-X-methylene species were identified as ground states with one local open-shell singlet carbene (δ1π1) and other local triplet nitrene moiety (π1π1) with 47.75-55.70 kcal/mol quintet-triplet energy gap (ΔEq-t). Silylene and germylene substitutions caused the reduction of ΔEq-t. One local closed-shell singlet silylene or germylene moiety (δ2π0) and one local triplet nitrene moiety (π1π1) were connected to make triplet (nitrenoethynyl)silylenes, and (nitrenoethynyl)germylenes. The species of (nitrenoethynyl)silylenes, and nitrenoethynyl)germylenes could be applied as dipolar intermediates in mechanism identification of chemical reactions. Quintet states were found as ground states with one local triplet divalency moiety (π 1π1) and also other local triplet nitrene moiety (π1π1).


Main Subjects

[1]  Kassaee M.Z., Musavi S.M., JalaliManesh N., Ghambarian M., A Theoretical Study on Phosphasilylenes CPSi-X (X=H, CN, NH2 and OMe), Journal of Molecular Structure: THEOCHEM, 761: 7-16 (2006).
[2] Kassaee M.Z., Musavi S.M., Momeni M.R., Shakib F.A., Ghambarian M., How Steric Effects Favor Thiepins Over their Benzene Sulfide Tautomers at Theoretical Levels, Journal of Molecular Structure: THEOCHEM, 861: 117-121 (2008).
[3] Mohajeri S., Noei M., Molaei N., Cyanogen, Methylacetylene, Hydroquinone, Ethylacetylene, Aniline, Pyrrole, and Ethanol Detection by Using BNNT: DFT Studies, Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 36, 89-98 (2017).
 [4] Jafari H., Mohsenifar F., Sayin k., Effect of Alkyl Chain Length on Adsorption Behavior and Corrosion Inhibition of Imidazoline Inhibitors, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(5): 85-103 (2018).
[5] Kassaee M.Z., Musavi S.M., Ghambarian M., From Halo-Azasilylenes to Halo-Phosphasilylenes (X-CNSi vs. X-CPSi) at ab Initio and DFT Levels, Journal of Organometallic Chemistry 691, 2666-2678 (2006).
[6] Borden W.T., "Diradicals", John Wiley & Sons, Inc., (1982).
[7] Zuev P., Sheridan R., Organic Polycarbenes: Generation, Characterization, and Chemistry, Tetrahedron, 51: 11337-11376 (1995).
[8.] Nicolaides A., et al. Of Ortho-Conjugatively Linked Reactive Intermediates:  The Cases of Ortho-Phenylene-(Bis)Nitrene, -Carbenonitrene, and -(Bis)Carbene. Journal of the American Chemical Society 121, 10563-10572 (1999).
[9] Inagaki S., Iwase K., Goto N., Cross vs. Linear Conjugation as Four p-Orbitals. Substituted Vinylcarbenes and Biscarbenes as Four-.pi.-electron Systems, The Journal of Organic Chemistry 51, 362-366 (1986).
[10] Enyo T., Arai N., Nakane N., Nicolaides A., Tomioka H., o-Phenylene Halocarbenonitrenes and o-Phenylene Chlorocarbenocarbene:  A Combined Experimental and Computational Approach, The Journal of Organic Chemistry 70: 7744-7754 (2005).
[11] Flock M., Pierloot K., Nguyen M.T., Vanquickenborne L.G., p-Phenylbisphosphinidene and Its Carbene and Nitrene Analogues:  An ab Initio Study. The Journal of Physical Chemistry A 104: 4022-4029 (2000).
[12] Nicolaides A., Enyo T., Miura D., Tomioka H., p-Phenylenecarbenonitrene and its Halogen Derivatives: How Does Resonance Interaction between a Nitrene and a Carbene Center Affect the Overall Electronic Configuration? Journal of the American Chemical Society, 123: 2628-2636 (2001).
[13.] Ling C., Minato M., Lahti P.M., Van Willigen H., Models for Intramolecular Exchange in Organic pi.-Conjugated Open-Shell Systems. a Comparison of 1,1-Ethenediyl and Carbonyl Linked Bis(arylnitrenes), Journal of the American Chemical Society 114, 9959-9969 (1992).
[14] Enyo T., Nicolaides A., Tomioka H., Halogen Derivatives of m-Phenylene(carbeno)nitrene:  A Switch in Ground-State Multiplicity. The Journal of Organic Chemistry 67, 5578-5587 (2002).
[15] Kundu S., Samuel P.P., Luebben A., Andrada D.M., Frenking G., Dittrich B., Roesky H.W., Carbene Stabilized Interconnected Bis-germylene and its Silicon Analogue with Small Methyl Substituents, Dalton Transactions (2017).
[16] Seow C., Xi H.-W., Li Y., So, C.-W., Synthesis of a Germylidenide Anion from the C–C Bond Activation of a Bis(germylene), Organometallics 35, 1060-1063 (2016).
[17] Zhou Y.-P., Raoufmoghaddam S., Szilvási T., Driess M., A Bis(silylene)-Substituted ortho-Carborane as a Superior Ligand in the Nickel-Catalyzed Amination of Arenes, Angewandte Chemie International Edition 55, 12868-12872 (2016).
[18] Koch A., Krieck S., Görls H., Westerhausen M., Alkaline Earth Metal–Carbene Complexes with the Versatile Tridentate 2,6-Bis(3-mesitylimidazol-2-ylidene)pyridine Ligand, Organometallics 36, 994-1000 (2017).
[19] Borden W.T., Davidson, E.R., Theoretical Studies of Diradicals Containing four .pi. Electrons, Accounts of Chemical Research 14: 69-76 (1981).
[20] Dougherty D.A., Spin Control in Organic Molecules, Accounts of Chemical Research 24: 88-94 (1991).
[21] Itoh K., Electron Spin Resonance of an Aromatic Hydrocarbon in its Quintet Ground State, Chemical Physics Letters 1, 235-238 (1967).
[22] Wasserman E., Murray R.W., Yager W.A., Trozzolo A.M., Smolinsky G., Quintet Ground States of m-dicarbene and m-dinitrene Compounds, Journal of the American Chemical Society, 89: 5076-5078 (1967).
[23] Iwamura H., High-spin Organic Molecules and Spin Alignment in Organic Molecular Assemblies, in "Advances in Physical Organic Chemistry", 26. (ed. Bethell D.): 179-253 Academic Press, (1991).
[24] Subhan W., Rempala P., Sheridan R.S., p-Phenylenebismethylene:  Characterization, Calculation, and Conversion to a Conjugated Bis-Carbonyloxide. Journal of the American Chemical Society 120, 11528-11529 (1998).
[25] Zuev P., Sheridan R.S., p-Phenylenebis(chloromethylene): resonance interaction of two singlet carbenes. Journal of the American Chemical Society 115, 3788-3789 (1993).
[26] Zuev P.S., Sheridan R.S., Substituent Switching of Biscarbene Electronic Configurations: p-Phenylenebis(fluoromethylene). Journal of the American Chemical Society 116, 9381-9382 (1994).
[28] Nicolaides A., Tomioka H., Murata S., Direct Observation And Characterization of p-Phenylenebisnitrene. a Labile Quinoidal Diradical, Journal of the American Chemical Society 120, 11530-11531 (1998).
[29] Kassaee M.Z., Musavi S.M., Jalalimanesh N., A new Generation of Intermediates at ab initio and DFT Levels: Allylic Carbenonitrenes, C=(X)C–NX=H, CH3, COOH, F, OH, OCH3, CF3, CN, and NH2. Journal of Theoretical and Computational Chemistry 07, 367-379 (2008).
[30] Kassaee M.Z., Soleimani-Amiri S., Majdi M., Musavi S.M., Novel Quintet and Triplet (nitrenoethynyl)Halomethylenes at Theoretical Levels, Struct Chem 21, 229-235 (2010).
[31] Soleimani Amiri, S., Kassaee, M.Z., Theoretical Study of Singlet, Triplet, and the Quintet States, of (Nitrenoethynyl) Halosilylene. Nashrieh Shimi va Mohandesi Shimi Iran (NSMSI) 35(4): 87-94 (2016). [Full Articles in Presian]
[32] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., M. Cossi, Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2016.
[33] Frisch M.J., Head-Gordon M., Pople J.A., Semi-Direct Algorithms for the MP2 Energy and Gradient, Chemical Physics Letters 166, 281-289 (1990).
[35] Adamo C., Barone V., Toward Reliable Adiabatic Connection Models Free from Adjustable Parameters, Chemical Physics Letters 274, 242-250 (1997).
[36] Krishnan R., Binkley J.S., Seeger R., Pople J.A., Self‐Consistent Molecular Orbital Methods. XX. a Basis Set for Correlated Wave Functions, The Journal of Chemical Physics 72, 650-654 (1980).
[37] Krishnan R., Pople J.A., Approximate Fourth-Order Perturbation Theory of the Electron Correlation Energy, International Journal of Quantum Chemistry 14, 91-100 (1978).
[38] Krishnan R., Frisch M.J., Pople J.A., Contribution of Triple Substitutions to the Electron Correlation Energy in Fourth Order Perturbation Theory, The Journal of Chemical Physics, 72: 4244-4245 (1980).
[39] Pople J.A., Head‐Gordon M., Raghavachari K., Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies, The Journal of Chemical Physics, 87: 5968-5975 (1987).
[40] Scuseria G.E., Schaefer H.F., Is Coupled Cluster Singles and Doubles (CCSD) More Computationally Intensive than Quadratic Configuration Interaction (QCISD)? The Journal of Chemical Physics, 90: 3700-3703 (1989).
[41] Hout R.F., Levi B.A., Hehre W.J., Effect of Electron Correlation on Theoretical Vibrational Frequencies. Journal of Computational Chemistry. 3: 234-250 (1982).
[42] Francl M.M., Pietro W.J., Hehrea W.J., Binkley J.S., Gordon M.S., DeFreesb D.J., Pople  J.A., Self‐Consistent Molecular Orbital Methods. XXIII. a Polarization‐Type Basis Set for Second‐Row Elements, The Journal of Chemical Physics, 77: 3654-3665 (1982).
[43] Carpenter J.E., Weinhold F., Analysis of the Geometry of the Hydroxymethyl Radical by the “Different Hybrids for Different Spins” Natural Bond Orbital Procedure, Journal of Molecular Structure: THEOCHEM, 169: 41-62 (1988).
[44] Barrientos C., Redondo P., Largo A., Reaction of C3H2+ with Atomic Nitrogen:  A Theoretical Study, The Journal of Physical Chemistry A, 104: 11541-11548 (2000).
[45] Barrientos C., Cimas A., Largo A., Structure and Stability of AlC2N Isomers: A Comparative ab initio and DFT Study, The Journal of Physical Chemistry A 105, 6724-6728 (2001).
[46] Apeloig Y., Pauncz R., Karni M., West R., Steiner W., Chapman D., Why is Methylene a Ground State Triplet While Silylene is a Ground State Singlet? Organometallics, 22: 3250-3256 (2003).