Effect of Alkyl Chain Length on Adsorption Behavior and Corrosion Inhibition of Imidazoline Inhibitors

Document Type : Research Article


1 Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, I.R. IRAN

2 Department of Mechanical Engineering, Higher Education Complex of Bam, Bam, I.R. IRAN

3 Department of Chemistry, Institute of Science, Cumhuriyet University, 58140 Sivas, TURKEY


Inhibition performances of imidazoline derivatives with different alkyl chain length for carbon steel in H2S acid solutions has been studied by polarization curves, AC impedance measurements, current transient, Atomic Force Microscopy (AFM) and Density Functional Theory (DFT) techniques. Results showed that the inhibition occurs through adsorption of the inhibitors molecules on the metal surface. The inhibition efficiency was found to increase with increasing inhibitor’s concentration. Polarization data indicated that these compounds act as mixed-type inhibitors. Computational studies of investigated inhibitors were performed by using Hartree–Fock (HF) and M062X methods which are ab-initio and DFT methods with 6-31G basis set in the gas phase and water. Calculated results indicate that the inferred inhibition efficiency increases with the increasing alkyl chain length, which is well in accordance with reported experimental results.


Main Subjects

[2] Atkinson J. T. N., Vandrofflear H., "Corrosion and Its control", Houston, Texas: NACE, 1-5 (1985).
[3] Uhlig H. H., Revie R.W., "Corrosion and Corrosion Control", New York: Wiley & Sons, Inc., 263-277 (1985).
[5] Jong Kwon P., Noh Hee J., Corrosion Inhibition Effect of Ester ContainingCationic Gemini Surfactants on Low Carbon Steel, Iran. J. Chem. Chem. Eng. (IJCCE), 35 (1): 85-93 (2016).
[6] Jafari H., Danaee I., Eskandari H., RashvandAvei M., Combined Computational and Experimental Study on the Adsorption and Inhibition Effects of N2O2 Schiff Base on the Corrosion of API 5L Grade B Steel in 1 mol/L HCl, J. Mater. Sci. Technol., 30(3): 239-252 (2014).
[8] Okafor P.C., Liu X., Zheng Y.G., Corrosion inhibition of Mild steel by Ethylamino Imidazoline Derivative in CO2-Saturated Solution, Corros. Sci., 51(4): 761-768 (2009).
[9] Jafari H., Danaee I., Eskandari H., RashvandAvei M., Electrochemical and Quantum Chemical Studies of N,N'-bis(4-hydroxybenzaldehyde)-2,2-DimethylpropandiimineSchiff Base as Corrosion Inhibitor for Low Carbon Steelin HCl Solution
J. Environ. Sci. Heal. A., 48(13): 1628–1641 (2013).
[10] Abderrahim K., Abderrahmane S., Millet J., Inhibition of Copper Corrosion by Ethanolamine in 100 ppm NaCl, Iran. J. Chem. Chem. Eng. (IJCCE), 35(4): 89-98 (2016).
[12] Anastas P.T., "Green Chemistry", John Wiley & Sons, Inc., 3 335–340 (2014).
[13] Roy Dennington, Todd Keith, John Millam, “Introduction to GaussView and Gaussian, Version 5”, Semichem Inc., Shawnee Mission, KS, (2009).
[14] Gaussian 09, RevisionD.01, M.J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, (2009).
[15] PerkinElmer, "ChemBioDraw Ultra Version" (, CambridgeSoft Waltham, MA, USA (2012).
[17] Zhang K., Xu B., Yang W., Yin X., Liu Y., Chen Y., Halogen-Substituted Imidazoline Derivatives as Corrosion Inhibitors for Mild steel in Hydrochloric Acid Solution, Corros. Sci., 90 : 284 – 295 (2015).
[18] Guo L., Zhu Sh., Zhang Sh., He Q., Li W., Theoretical Studies of Three Triazole Derivatives as Corrosion Inhibitors for Mild Steel in Acidic Medium, Corros. Sci., 87 : 366 – 375 (2014).
[19] Mert B.D., Yüce A.O., Kardas G., Yazıcı B., Inhibition Effect of 2-amino-4-methylpyridine on Mild Steel Corrosion: Experimental and Theoretical Investigation, Corros. Sci., 85: 287 – 295 (2014).
[20] Obot I.B., Gasem Z.M., Theoretical Evaluation of Corrosion Inhibition Performance of Some Pyrazine Derivatives, Corros. Sci., 83: 359 – 366 (2014).
[21] Sayin K. Karakaş D., Quantum Chemical Studies on the Some Inorganic Corrosion Inhibitors, Corros. Sci., 77: 37 – 45 (2013).
[24] Zarrouk A., Hammouti B., Lakhlifi T.,  Traisnel M., Vezin H., Bentiss F., New 1H-pyrrole-2,5-dione Derivatives as Efficient Organic Inhibitors of Carbon Steel Corrosion in Hydrochloric Acid Medium: Electrochemical, XPS and DFT Studies, Corros. Sci. 90: 572 – 584 (2015).
[29] Kiyooka S., Kaneno D., Fujiyama R., Parr’s Index to Describe both Electrophilicity and Nucleophilicity, Tetrahedron. Lett. 54(4): 339 – 342 (2013).
[30] Jafari H., Akbarzade K., Danaee I., Corrosion Inhibition of Carbon Steel Immersed in a 1M HCl Solution Using Benzothiazole Derivatives, Arab. J. Chem., (2014).
[31] Ashassi-Sorkhabi H., Shaabani B., Seifzadeh D., Corrosion Inhibition of Mild Steel by Some Schiff Base Compounds in Hydrochloric Acid, Appl. Surf. Sci., 239 (2): 154–164 (2005).
[32] Sayin K, Jafari H, Mohsenifar F, Effect of Pyridyl on Adsorption Behavior and Corrosion Inhibition of Aminotriazole, J. Taiwan Instit. Chem. Engin., 68: 431-439 (2016).
[33] Chetouani A., Aouniti A., Hammouti B., Benchat N., Benhadda T., Kertit S., Corrosion Inhibitors for Iron in Hydrochloride Acid Solution by Newly Synthesised Pyridazine Derivatives, Corros. Sci., 45(8): 1675–1684 (2003).
[35] Jafari H., Danaee I., Eskandari H., Inhibitive Action of Novel Schiff Base Towards Corrosion of API 5L Carbon Steel in 1 M Hydrochloric Acid Solutions, Trans. Indian Inst. Met., 68(5): 729–739 (2015).
[36] Olivares O., Likhanova N.V.,  Gomez B. J., Navarrete B., Llanos-Serrano M. E., Arce E., Hallen J.M., Electrochemical and XPS Sstudies of Decylamides of Alphaamino Acids Adsorption on Carbon Steel
in Acidic Environment
, Appl. Surf. Sci., 252: 2894–2909 (2006).
[37] Abdel Rehim S.S., Hazzazi O.A., Amin M.A., Khaled K.F., On the Corrosion Inhibition of Low Carbon Steel in Concentrated Sulphuric Acid Solutions. Part I: Chemical and Electrochemical (AC and DC) Studies, Corros. Sci., 50 (8): 2258–2271 (2008).
[38] Saleh M.M., Atia A.A., Effects of Structure of the Ionic Head of Cationic Surfactant on Its Inhibition of Acid Corrosion of Mild Steel, J. Appl. Electrochem., 36(8): 899-905 (2006).
[40]. Emregül K.C., Atakol O., Corrosion Inhibition of Mild Steel with Schiff Base Compounds in 1 M HCl, Mater. Chem. Phys. 82(1): 188–193 (2003).
[41] Li X.H., Deng S.D., Fu H., Inhibition by Jasminum Nudiflorum Lindl. Leaves Extract of the Corrosion of Cold Rolled Steel in Hydrochloric Acid Solution, J. Appl. Electrochem., 40(9): 1641–1649 (2010).
[42] Larabi L., Harek Y., Traianel M., Mansri A., Synergistic Influence of Poly(4-vinylpyridine) and Potassium Iodide on Inhibition of Corrosion of Mild Steel in 1 M HCl, J. Appl. Electrochem., 34 (8): 833–839 (2004).
[43] Jafari H., Sayin K., Sulfur Containing Compounds as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution, Trans. Indian Inst. Met., 69(3):  805–815 (2016).
[44] Shih H., Mansfeld F., A Fitting Procedure for Impedance Data of Systems with Very Low Corrosion Rates, Corros. Sci., 29(10): 1235–1240 (1989).
[45] Martinez S., Metikoš-Hukovic´ M. , A Nonlinear Kinetic Model Introduced for the Corrosion Inhibitive Properties of Some Organic InhibitorsJ. Appl. Electrochem., 33(12): 1137–1142 (2003).
[46] Jafari H., Akbarzade K., Effect of Concentration and Temperature on Carbon Steel Corrosion Inhibition, J. Bio. Tribo. Corros., 3(8):  8–14 (2017).
[47] Danaee I., Noori S., Kinetics of the Hydrogen Evolution Reaction on NiMn Graphite Modified Electrode, Int. J. Hydrogen Energ., 36(19):  12102–12111 (2011).
[48] Aramaki, K. Hagiwara M., Nishihara H., A Study on the Oxidative-Addition Reaction of Benzyl Compounds in Sulphuric Acid and Its Relation to Corrosion Inhibition, Corros. Sci., 28 (4): 343-352 (1988).