Cyanogen, Methylacetylene, Hydroquinone, Ethylacetylene, Aniline, Pyrrole, and Ethanol Detection by Using BNNT: DFT Studies

Document Type : Research Article

Authors

1 Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, I.R. IRAN

2 Department of Chemistry, College of Chemical Engineering , Mahshahr Branch, Islamic Azad University, Mahshahr, I.R. IRAN

3 Department of Chemistry College of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, I.R. IRAN

Abstract

Electrical sensitivity of a Boron Nitride Nano Tube (BNNT) was examined toward hydroquinone (C6H4(OH)2), cyanogens (C2N2), methylacetylene (C3H4), ethylacetylene (C4H6), aniline (C6H5NH2), ethanol (C2H5OH), pyrrole (C4H5N), molecules by using Density Functional Theory (DFT) calculations at the B3LYP/6-31G(d) level of theory. In considering the dsorption energy (Ead) of those molecules on the BNNT are sequenced: C6H5NH2(Ead= -47.55kcal/mol)> C4H5N (Ead=-26.66kcal/mol) >C2H5OH(Ead= -25.91kcal/mol)> (CN)2(Ead=-20.70kcal/mol)> C6H4(OH)2(Ead= -20.21kcal/mol) >C3H4(Ead=-12.73kcal/mol)> C4H6(Ead=-11.19kcal/mol). According to this comparison aniline molecule with Ead=-47.55 kcal/mol has the most adsorption energy among all molecules. Calculations showed that when the nanotube was doped by Si and Al atoms, the amount of HOMO/LUMO energy gap (Eg) reduced significantly. This reduced showed that BNNT is a suitable semiconductor after doping and the doped BNNT in the presence of those gases generates an electrical signal and therefore can be used potentially for gas sensors. Recent researches demonstrate that Boron nitride nanotube is a suitable adsorbent for detection and separation of those compounds.

Keywords

Main Subjects


[1] Yousefi N., Pazouki M., Alikhani Hesari F., Alizadeh M., Statistical Evaluation of the Pertinent Parameters
in Biosynthesis of Ag/MWf-CNT Composites Using Plackett-Burman Design and Response Surface Methodology
, Iran. J. Chem. Chem. Eng. (IJCCE), 35(2): 51-62 (2016).
[2] Hongmei J., Shuqin W., Wenfang D., Youming Z., Yueming T., Qingji X., Ming M., Graphene-Like Carbon Nanosheets as a New Electrode Material for Electrochemical Determination of Hydroquinone and Catechol, Talanta, 164:300-306 (2017).
[3] Noei M., Ebrahimikia M., Saghapour Y., Khodaverdi M., Salari A.A., Ahmadaghaei N., Removal of Ethyl Acetylene Toxic Gas from Environmental Systems Using AlN Nanotube, J. Nanostruct. Chem., 5(2): 213-217 (2015).
[4] Noei M., Arjmand M., Removal of Cyanogen Toxic Gas from Environmental Systems by Using BN Nanosheet, Indian Journal of Fundamental and Applied Life Sciences, 5(S1): 5074-5080 (2015).
[5] Noei M., Ebrahimikia M., Molaei N., Ahadi M., Salan A.A., Moradi O., Pyrrole Adsorption on Aluminum Nitride Nanotubes on DFT Data, Russ. J. Phys. Chem, 90(11): 2221-2229 (2016).
[6] Yanli Z., Dongguang L., Adsorption Mechanism for Aniline on the Hypercross-Linked Fiber, Iran. J. Chem. Chem. Eng.(IJCCE), 31(3): 29-34 (2012).
[7] Spatari S., Bagley D.M., Maclean H.L., Life Cycle Evaluation of Emerging Lignocellulosic Ethanol Conversion Technologies, Bioresource Technology, 101(2):654-667 (2010).
[8] Zhu B.E., Pan Z.Y., Hou M., Cheng D., Wang Y.X., Melting Behavior of Gold Nanowires in Carbon Nanotubes, Molecular Physics, 109(4): 527-533 (2011).  
[9] Tavasoli A., Anahid S., Nakhaeipour A., Effects of Confinement in Carbon Nanotubes on the Performance and Lifetime of Fischer-Tropsch Lron Nano Catalysts, Iran. J. Chem. Chem. Eng. (IJCCE)., 29(3):1-12 (2010).
[11] Noei M., Asadi H., Salari A.A., Hosseini Mahjoob S.M.R., Adsorption of Pyridine by Using BN Nanotube: A DFT study, Indian Journal of Fundamental and Applied life Sciences, 4(2): 679-685 (2014). 
[12] Lin X., Chen D.Q., Zhong B., Yang J.L., Purification of Yard-Glass shaped boron nitride nanotubes, Iran. J. Chem. Chem. Eng. (IJCCE), 33(1):29-36 (2014).
[13] Noei M., Ghaemizadeh M., Adsorption of Ethanol by Using BN Nanotube: A DFT Study, Int. J. New Chemistry, 1(1):22-29 (2014).
[14] Moghimi M., Baei M.T., Nanostructures’ Study of Chemisorptions of O2 Molecule on Al (100) Surface, Journal of Saudi Chemical Society, 18(5):469-473 (2014).
[15] Peyghan A.A., Yourdkhani S., Noei M., Working Mechanism of a BC3 Nanotube Carbon Monoxide Gas Sensor, Commun. Theor. Phys, 60(1):113-118 (2013).
[16] Beheshtian J., Noei M., Soleymanabadi H., Peyghan A.A., Aamonia Monitoring by Carbon Nitride Nanotubes: A Density Functional Study, Thin Solid Films, 534(null):650-654 (2013).
[17] Noei M., Salari A.A., Ahmadaghaei N., Bagheri Z., Peyghan A.A., DFT Study of the Dissociative Adsorption of HF on an AlN Nanotube, C. R. Chimie, 16(11):985-989 (2013).
[19] Sarma J.V.N., Rahman A., Jayaganthan R., Chowdhury R., Haranath D., Al-doped ZnO Nanostructured Thin Films: Density Functional Theory and Experiment, Int. J. Nanosci., 14(4): 1550015-1550028 (2015).
[20] Breedon M., Spencer M.J.S., Yarovsky I., Adsorption of NO2 on Oxygen Deficient ZnO(2101) for Gas Sensing Applications: A DFT StudyJ. Phys. Chem. C., 114(39):16603-16610 (2010).
[21]  Najafpour J., Zohari N., The Structure and Chemical Bond of FOX-7: The AIM Analysis and Vibrational Normal Modes, Iran. J. Chem. Chem. Eng.(IJCCE), 30(3):113-120 (2011).
[22] Salari A., Ebrahimikia M., Ahmadaghaei N., Dehdari B., Noei M., Pyrrole Detection by BeO Nanotube: DFT Studies, Int. J. New Chemistry, 1(3):134-144 (2014).
[23] Noei M., Probing the Electronic Sensitivity of BN and Carbon Nanotubes to Carbonyl Sulfide: A Theoretical Study, Journal of Molecular Liquids, 224(A):757-762 (2016).
[24] Peygan A.A., Hadipour N.L., Bagheri Z., Effects of Al Doping and Double-Antisite Defect on the Adsorption of  HCN on a BC2N Nanotue: Density Functional Theory Studies, J. Phys. Chem. C, 117(5):2427-2432 (2013).
[25] Beheshtian J., Peygan A.A., Noei M., Sensing Behavior of Al and Si Doped BCGraphenes to Formaldehyde, Sensors and Actuators B: Chemical, 181:829-834 (2013)
[26] Shokuhi Rad A., First Principles Study of Al-Doped Graphene as Nanostructure Adsorbent for NO2 and N2O:DFT Calculations, Applied Surface Science, 357(A):1217-1224 (2015).
[27] Peygan A.A., Noei M., Electronic Response of nano-Sized Cages of ZnO and MgO to Presence of Nitric Oxide, Chinese journal of chemical physics, 26(2):231-236 (2013).