Morphological and Crystallographic Characterization of Nanoparticles by Granulometry Image Analysis and Rietveld Refinement Methods

Document Type: Research Article

Authors

1 Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, ‎Studentská 573, CZ-532 10 Pardubice, CZECH Republic

2 School of Engineering Science, College of Engineering, University of Tehran, P.O. Box 11155-4563 Tehran, I.R. IRAN

Abstract

The particle size distribution of the resultant cobalt ferrite samples was determined from Scanning Electron Microscopy (SEM) images using the granulometry image analysis method. Results showed the nanosized particles of the samples. The X-Ray Diffraction (XRD) patterns of samples were also analyzed by Rietveld refinement method. The results indicated that the precipitated sample at 95 oC had cubic cobalt ferrite structure with F3dm:3 space group and high crystallinity. The lattice parameters, microstrain and crystallite size of samples were also calculated from the XRD pattern. With increasing the precipitation temperature, the crystallite and particle sizes were increased while the lattice parameter and microstrain were decreased. Regarding the results, it can be concluded that the lattice parameter of cobalt ferrite has a diverse relationship with crystallite size.

Keywords

Main Subjects


[2] Dabaghi H.H., Ganjkhanlou Y., Kazemzad M., Moghaddam A.B., Relation between Conductance, Photoluminescence Bands and Structure of ITO Nanoparticles Prepared by Various Chemical Methods, Micro Nano Lett., 6: 429-433 (2011).

[3] Bagheri M., Karimkoshteh M., One-Pot Reduction of Aromatic Carboxylic Acid to Alcohol by SiO2@FeSO4 Nanocomposite at Solvent-Free Condition, Iran. J. Chem. Chem. Eng. (IJCCE), 36: 37-43 (2017).

[4] Khashi M., Allameh S., Beyramabadi S.A., Morsali A., Dastmalchian E., Gharib A., BiFeO3 Magnetic Nanoparticles: A Novel, Efficient and Reusable Magnetic Catalyst for the Synthesis of Polyhydroquinoline Derivatives, Iran. J. Chem. Chem. Eng. (IJCCE), 36: 45-52 (2017).

[6] Razeghizadeh A.R., Zalaghi L., Kazeminezhad I., Rafee V., Growth and Optical Properties Investigation of Pure and Al-Doped SnO2 Nanostructures by Sol-Gel Method, Iran. J. Chem. Chem. Eng. (IJCCE), 36: 1-5 (2017).

[7] Hamedi S., Shojaosadati S.A., Shokrollahzadeh S.,Hashemi-Najaf Abadi S., Controlled Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Filamentous Fungus, Iran. J. Chem. Chem. Eng. (IJCCE), 36: 33-42 (2017).

[8] Moghaddam A.B., Hosseini S., Badraghi J., Banaei A., Hybrid Nanocomposite Based on CoFe2O4 Magnetic Nanoparticles and Polyaniline, Iran. J. Chem. Chem. Eng. (IJCCE), 29: 173-179 (2010).

[9] Mohammadi A., Ganjkhanlou Y., Kazemzad M., Moghaddam A.B., Hessari F.A., Dinarvand R., Effect of Strontium Doping on Nanostructure and Chromaticity of Y2O3:Eu Compounds, Int. J. Modern Phys. B, 25: 2949-2956 (2011).

[10] Mohammadi A., Ganjkhanlou Y., Moghaddam A.B., Kazemzad M., Hessari F.Al., Dinarvand R., Synthesis of Nanocrystalline Y2O3:Eu Phosphor Through Different Chemical Methods: Studies on the Chromaticity Dependence and Phase Conversion, Micro Nano Lett., 7: 515-518 (2012).

[11] Nabid M.R., Shamsianpour M., Sedghi R., Moghaddam A.B., Enzyme-Catalyzed Synthesis of Conducting Polyaniline Nanocomposites with Pure and Functionalized Carbon Nanotubes, Chem. Eng. Technol., 35: 1707–1712 (2012).

[12] Khajeamiri A.R., Kobarfard F., Moghaddam A.B., Application of Polyaniline and Polyaniline/Multiwalled Carbon Nanotubes-Coated Fibers for Analysis of Ecstasy, Chem. Eng. Technol., 35: 1515-1519 (2012).

[13] Burda C., Chen X.B., Narayanan R., El-Sayed M.A., Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev., 105: 1025-1102 (2005).

[14] Ganjkhanlou Y., Hosseinnia A., Kazemzad M., Moghaddam A.B., Khanlarkhani A., Y2O3: Eu, Zn Nanocrystals as a Fluorescent Probe for the Detection of Biotin, Microchim. Acta, 177: 473-478 (2012).

[16] Moghaddam A.B., Esmaieli M., Khodadadi A.A., Ganjkhanlou Y., Asheghali D., Direct Electron Transfer and Biocatalytic Activity of Iron Storage Protein Molecules Immobilized on Electrodeposited Cobalt Oxide Nanoparticles, Microchim. Acta, 173: 317-322 (2011).

[17] Pnakhurst Q.A., Connolly J., Jones S.K., Cobson J., Applications of Magnetic Nanoparticles in Biomedicine, J. Phys. D, 36: R167 (2003).

[18] Fontijn W.F.J., Van der Zaag P.J., Devillers M.A.C., Brabers V.A.M., Metselaar R., Optical and Magneto-Optical Polar Kerr Spectra of Fe3O4 and Mg2+ or Al3+ Substituted Fe3O4, Phys. Rev. B, 56: 5432-5442 (1997).

[19] Mohammadi A., Moghaddam A.B., Badraghi J., Direct Electron Transfer of Ferritin on Electrodeposited Nickel Oxide Cubic Nanoparticles, Anal. Methods, 4: 1024-1028 (2012).

[20] Bergemann C., Muller-Schulte D., Oster J., Brassard L., Lubbe A.S. J., Magnetic Ion-Exchange Nano- and Microparticles for Medical, Biochemical and Molecular Biological Applications, J. Magn. Magn. Mater., 194: 45-52 (1999).

[21] Tartaj P., Morales P.M., Veintemillas-Verdaguer S., Gonzalez-Carreno T., Serna C.J., The Preparation of Magnetic Nanoparticles for Applications in Biomedicine, J. Phys. D, 36: 182-197 (2003).

[22] Kaufner L., Cartier R., Wustneck R., Fichtner I., Pietschmann S., Bruhn H., Schutt D., Thunemann A.F., Pison U., One-Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles, Nanotechnology, 18: 115710 (2007).

[23] Yuan J.J., Zhao Q., Xu Y.S., Liu Z.G., Du X.B., Wen G.H., Synthesis and Magnetic Properties of Spinel CoFe2O4 Nanowire Arrays, J. Magn. Magn. Mater., 321:2795-2798 (2009).

[24] Liu C., Zou B., Rondinone A.J., Zhang Z.J., X-ray Diffraction Pattern of as-Prepared FePt Nanoparticles, J. Am. Chem. Soc., 122: 6263-6267 (2000).

[25] Sivakumar N., Narayanasamy A., Shinoda K., Chinnasamy C.N., Jeyadevan B., Greneche  J.-M., Electrical and Magnetic Properties of Chemically Derived Nanocrystalline Cobalt Ferrite, J. Appl. Phys., 102: 013916-013916 (2007).

[26] Zhang L., Li Z., Study of Nanocrystalline FeSi Alloys Prepared by Mechanical Alloying, J. Alloys Comp., 469: 422-426 (2009).

[27] Bao N., Shen L., Wang Y., Padhan P., Gupta A., Organic Molecule-Assisted Hydrothermal Self-Assembly of Size-Controlled Tubular ZnO Nnostructures, J. Am. Chem. Soc., 129: 12374-12375 (2007).

[28] Ahmed S.R., Ogale S.B., Papaefthymiou G.C., Ramesh R., Kofinas P., Magnetic Properties of BiFeO3-BaTiO3 Solid Solution Nanostructures, Appl. Phys. Lett., 80: 1616-1618 (2002).

[29] Rietveld H.M., Rietveld Refinement an Industry Standard, J. Appl. Cryst., 2: 65-71 (1969).

[30] Lutterotti L., Ceccato R., Maschio R.D., Pagani E., Quantitative Analysis of  Materials by the Rietveld Method, Mater. Sci. Forum, 93: 278-281 (1998).

[31] Lutterotti L., Gialanella S., X-ray Diffraction Characterization of Heavily Deformed Metallic Specimens, Acta Mater., 46: 101-108 (1998).

[32] Torkaman N.M., Ganjkhanlou Y., Kazemzad M., Dabaghi H.H., Keyanpour-Rad M., Crystallographic Parameters and Electro-Optical Constants in ITO Thin Films, Mat. Charact., 61: 362-370 (2010).

[33] Gonzalez R.C., Woods R.E., Eddins S., “Digital Image Processing Using Matlab”, Prentice Hall, New Jersey (2004).

[34] Williamson G.K., Hall W.H., X-Ray Line Broadening from Filed Auminium and Wolfram, Acta Metall., 1: 22-31 (1953).