• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
Articles in Press
Current Issue
Journal Archive
Volume Volume 36 (2017)
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 35 (2016)
Volume Volume 34 (2015)
Volume Volume 33 (2014)
Volume Volume 32 (2013)
Volume Volume 31 (2012)
Volume Volume 30 (2011)
Volume Volume 29 (2010)
Volume Volume 28 (2009)
Volume Volume 27 (2008)
Volume Volume 26 (2007)
Volume Volume 25 (2006)
Volume Volume 24 (2005)
Volume Volume 23 (2004)
Volume Volume 22 (2003)
Volume Volume 21 (2002)
Volume Volume 20 (2001)
Volume Volume 19 (2000)
Volume Volume 18 (1999)
Volume Volume 17 (1998)
Volume Volume 16 (1997)
Volume Volume 15 (1996)
Volume Volume 14 (1995)
Volume Volume 13 (1994)
Volume Volume 12 (1993)
Volume Volume 11 (1992)
Volume Volume 10 (1991)
Volume Volume 9 (1990)
Volume Volume 8 (1989)
Volume Volume 7 (1988)
Volume Volume 6 (1987)
Khashi, M., Allameh, S., Beyramabadi, S., Morsali, A., Dastmalchian, E., Gharib, A. (2017). BiFeO3 Magnetic Nanoparticles: A Novel, Efficient and Reusable Magnetic Catalyst for the Synthesis of Polyhydroquinoline Derivatives. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(3), 45-52.
Maryam Khashi; Sadegh Allameh; Safar Ali Beyramabadi; Ali Morsali; Elnaz Dastmalchian; Azar Gharib. "BiFeO3 Magnetic Nanoparticles: A Novel, Efficient and Reusable Magnetic Catalyst for the Synthesis of Polyhydroquinoline Derivatives". Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36, 3, 2017, 45-52.
Khashi, M., Allameh, S., Beyramabadi, S., Morsali, A., Dastmalchian, E., Gharib, A. (2017). 'BiFeO3 Magnetic Nanoparticles: A Novel, Efficient and Reusable Magnetic Catalyst for the Synthesis of Polyhydroquinoline Derivatives', Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(3), pp. 45-52.
Khashi, M., Allameh, S., Beyramabadi, S., Morsali, A., Dastmalchian, E., Gharib, A. BiFeO3 Magnetic Nanoparticles: A Novel, Efficient and Reusable Magnetic Catalyst for the Synthesis of Polyhydroquinoline Derivatives. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2017; 36(3): 45-52.

BiFeO3 Magnetic Nanoparticles: A Novel, Efficient and Reusable Magnetic Catalyst for the Synthesis of Polyhydroquinoline Derivatives

Article 5, Volume 36, Issue 3 - Serial Number 83, May and June 2017, Page 45-52  XML PDF (407 K)
Document Type: Research Article
Authors
Maryam Khashi 1; Sadegh Allameh2; Safar Ali Beyramabadi2; Ali Morsali2; Elnaz Dastmalchian2; Azar Gharib3
1Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
2Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, I.R. IRAN
3Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, I.R. IRAN
Abstract
Herein, it has been shown that the bismuth ferrite magnetic nanoparticles (BFO-MNPs) are new, efficient and recyclable catalysts for the synthesis of polyhydroquinoline derivatives by the Hantzsch reaction. The one-pot four-component cyclocondensation reaction of dimedone, aromatic aldehydes, ethyl acetoacetate and ammonium acetate was carried out under solvent-free conditions. The desired products were obtained in very short reaction times with high yields. The magnetic nanocatalyst was characterized by the X-Ray Diffraction (XRD) and FT-IR analysis. For the first time, the bismuth ferrite magnetic nanoparticles were used as a catalyst in the Hantzsch reaction. The catalyst was found to be reusable, which showed considerable catalytic activity after the third run.
Keywords
BiFeO3 NMPs; Magnetic nanocatalysts; Polyhydroquinoline derivatives; Hantzsch reaction
Main Subjects
Nano Chemistry; Nano Technology
References
[1] Eerenstein W., Mathur N., Scott J.F., Multiferroic and Magnetoelectric Materials, Nature., 442, 759-765 (2006).

[2] Fischer P., Polomska M., Sosnowska I., Szymanski M., Temperature Dependence of the Crystal and  Magnetic Structures of BiFeO3, J. Phys. C: Solid State Phys., 13 (10): 1931-1940 (1980).

[3] Layek S., Verma H., Magnetic and Dielectric Properties of Multiferroic BiFeO3 Nanoparticles Synthesized by a Novel Citrate Combustion Method, Adv. Mat. Lett., 3, 533-538 (2012).

[4] Liu T., Xu Y., Zhao J, Low‐Temperature Synthesis of BiFeO3 via PVA Sol–Gel Route, J. Am. Ceram. Soc., 93 (11): 3637-3641 (2010).

[5] Wang X., Zhang Y.G., Wu Z., Magnetic and Optical Properties of Multiferroic Bismuth Ferrite Nanoparticles by Tartaric Acid-Assisted Sol–Gel Strategy, Mat. Lett., 64 (3): 486-488 (2010).

[6] Liu X.L., Dou X.L., Xie H.Y, Chen J.F., Dielectric Properties and Photocatalytic Activity of Single Phase BFO Prepared by Chemical Coprecipitation, in: Key Engineering Materials, Trans. Tech. Publ., Chapter 3: 1235-1239 (2012).

[7] Farhadi S., Zaidi M., Bismuth Ferrite (BiFeO3) Nanopowder Prepared by Sucrose-Assisted Combustion Method: A Novel and Reusable Heterogeneous Catalyst for Acetylation of Amines, Alcohols and Phenols Under Solvent-Free Conditions, J. Mol. Cat. A: Chem., 299 (1-2): 18-25 (2009).

[8] Gao F., Chen X., Yin K., Dong S., Ren Z., Yuan F., Yu T., Zou Z., Liu J.M, Visible‐Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles, Adv. Mat., 19 (19):2889-2892 (2007).

[9] Kang YQ., Cao M.S., Yuan J., Shi X.L., Microwave absorption properties of multiferroic BiFeO3 nanoparticles, Mat. Lett., 63 (15):1344-1346 (2009).

[10] Yu X.L., Wang Y., Hu Y.M., Cao C.B., Chan H.L.W., Gas‐Sensing Properties of Perovskite BiFeO3 Nanoparticles, J. Am. Ceram. Soc., 92 (12):3105-3107 (2009).

[11] Zhu J., Bienaymé H., “Multicomponent Reactions”, John Wiley & Sons, (2006).

 [12] Bagley M.C., Lubinu M.C., Microwave-Assisted Multicomponent Reactions for the Synthesis of Heterocycles, Springer, 1: 31-58 (2006).

[13] Simon C., Constantieux T., Rodriguez J., Utilisation of 1,3‐Dicarbonyl Derivatives in Multicomponent Reactions, Eur. J. Org. Chem., 2004 (24): 4957-498 (2004).

[14] Dömling A., Ugi I., Multicomponent Reactions with Isocyanides, Angew. Chem. Inter. Ed., 39 (18): 3168-3210 (2000).

[15] Vijesh A.M., Isloor A.M., Peethambar S.K., Shivananda K.N., Arulmoli T., Isloor A.N., Hantzsch Reaction: Synthesis and Characterization of Some New 1,4-Dihydropyridine Derivatives as Potent Antimicrobial and Antioxidant Agents, Eur. J. Med. Chem., 46 (11): 5591-5597 (2011).

[16] Datar P.A., Auti P.B., Design and Synthesis of Novel 4-Substituted 1,4-Dihydropyridine Derivatives as Hypotensive Agents, J. Saudi Chem. Soc., 20 (5): 510-516 (2016).

[17] Trivedi A.R., Doodiya D.K., Dholariya B.H., Kataria V.B., Bhuva V.R., Shah V.H., Synthesis and Biological Evaluation of Some Novel N-aryl-1,4-Dihydropyridines as Potential Antitubercular Agents, Bioorg. Med. Chem. Lett., 21 (18): 5181-5183 (2011).

[18] Loev B., Snader K.M, The Hantzsch Reaction. I. Oxidative Dealkylation of Certain Dihydropyridines, J. Org. Chem., 30 (6):1914-1916 (1965).

[19] Kumar H., Nayra N., Dharmarajan T.S., Ghate M., Synthesis and in vitro Calcium Channel Blocking Activity of Symmetrical and Unsymmetrical Substituted 1,4-Dihydropyridine Derivatives., Asia. J. Chem., 21 (6): 4357-4365 (2009).

[20] Ko S., Yao C.F., Ceric Ammonium Nitrate (CAN) Catalyzes the One-Pot Synthesis of Polyhydroquinoline Via the Hantzsch Reaction, Tetrahedron., 62 (31):7293-7299 (2006).

[21] Ji S.J., Jiang Z.Q., JUN L., Loh T.P, Facile Ionic Liquids-Promoted One-Pot Synthesis of Polyhydroquinoline Derivatives Under Solvent Free Conditions, Synlett., 2004 (5):831-835 (2004).

[22] Kumar A., Maurya R.A., Synthesis of Polyhydroquinoline Derivatives Through Unsymmetric Hantzsch Reaction Using Organocatalysts, Tetrahedron., 63 (9):1946-1952 (2007).

[23] Wang L.M., Sheng J., Zhang L., Han J.W., Fan Z.Y., Tian H., Qian C.T., Facile Yb(OTf)3 Promoted One-Pot Synthesis of Polyhydroquinoline Derivatives Through Hantzsch Reaction, Tetrahedron., 61 (6): 1539-1543 (2005).

[24] Davoodnia A., Khashi. M, Tavakoli-Hoseini N., Tetrabutylammonium Hexatungstate [TBA]2[W6O19]: Novel and Reusable Heterogeneous Catalyst for Rapid Solvent-Free Synthesis of Polyhydroquinoline Via Unsymmetrical Hantzsch Reaction, Chin. J. Cat., 34 (6):1173-1178 (2013).

[25] Mohammadi Ziarani Gh., Badiei A., Khaniania Y., Haddadpour M., One Pot Synthesis of Polyhydroquinolines Catalyzed by Sulfonic Acid Functionalized SBA-15 as a New Nanoporous Acid Catalyst under Solvent Free Conditions,
Iran. J. Chem. Chem. Eng (IJCCE)., 29 (2): 1-10 (2010).

[26] Sapkal S.B., Shelke K.F., Shingate B.B., Shingare M.S., Nickel Nanoparticle-Catalyzed Facile and Efficient One-Pot Synthesis of Polyhydroquinoline Derivatives via Hantzsch Condensation Under Solvent-Free Conditions, Tetrahedron Lett., 50 (15): 1754-1756 (2009).

[27] Saadatjou N., Jafari A., Sahebdelfar A., Synthesis and Characterization of Ru/Al2O3 Nanocatalyst for Ammonia Synthesis, Iran. J. Chem. Chem. Eng (IJCCE)., 34 (1): 1-9 (2015).

[28] Fazeli A., Khodadadi A.A., Mortazavi Y., Manafi H., Cyclic Regeneration of Cu/ZnO/Al2O3 Nano Crystalline Catalyst of Methanol Steam Reforming for Hydrogen Production in a Micro-Fixed-Bed Reactor, Iran. J. Chem. Chem. Eng (IJCCE)., 32 (3): 45-59 (2013).

[29] Tavasoli A., Karimi S., Nikpour H., Fadakar H., Molybdenum Loading Effects on the Physico-Chemical Properties and Performance of Carbon Nanotubes Supported Alkalized MoS2 Catalysts for Higher Alcohols Synthesis, Iran. J. Chem. Chem. Eng (IJCCE)., 32 (1): 11-19 (2013).

[30] Trepanier M., Tavasoli A., Anahid S., Dalai A.K., Deactivation Behavior of Carbon Nanotubes Supported Cobalt Catalysts in Fischer-Tropsch Synthesis, Iran. J. Chem. Chem. Eng (IJCCE)., 30 (1): 37-47 (2011).

[32] Khazaei A., Moosavi-Zare A., Afshar-Hezarkhani H., Khakyzadeh V., Nano-Ferrous Ferric Oxide (nano-Fe3O4): Magnetite Catalytic System for the One-Pot Four-Component Tandem Imine/Enamine Formation-Knoevenagel–Michael-Cyclocondensation Reaction of Dimedone, Aldehydes, β-Ketoesters and Ammonium Acetate under Green Media, RSC. Ad., 4 (61): 32142-32147 (2014).

[33] Pablal B., Nagaraju S., Veerabhadraiah P., Sujatha K., Kanvah S., Vijaya Kumar B., Kashinath D., Recyclable Bi2WO6-Nanoparticle Mediated One-Pot Multicomponent Reactions in Aqueous Medium at Room Temperature, RSC. Ad., 4 (97): 51168-51174 (2014).

[34] Nasr-Esfahani M., Jafar Hoseini S., Montazerozohori  M., Mehrabi M., Nasrabadi H., Magnetic Fe3O4 Nanoparticles: Efficient and Recoverable Nanocatalyst for the Synthesis of Polyhydroquinolines and Hantzsch 1,4-Dihydropyridines under Solvent-Free Conditions, J. Mol. Catal. A: Chem., 382, 99-105 (2014).

[35] Liu Z., Qi Y., Lu C., High Efficient Ultraviolet Photocatalytic Activity of BiFeO3 Nanoparticles Synthesized by a Chemical Coprecipitation Process, J. Mat. Sci.: Mat. Electr., 21 (4):380-384 (2009).

[36] Reddy V.R, Meneghini C., Kothari D., Gupta A., Aquilanti G., High Temperature Extended X-Ray Absorption Fine Structure Study of Multiferroic BiFeO3, J. Phys. Cond. Mat., 24 (33): 333201-339501 (2012).

Statistics
Article View: 216
PDF Download: 373
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

web page hit counter

Journal Management System. Designed by sinaweb.