Hybrid Nanocomposite Based on CoFe2O4 Magnetic Nanoparticles and Polyaniline

Document Type: Research Article


1 Department of Engineering Science, College of Engineering, University of Tehran, P.O. Box 11155-4563 Tehran, I.R. IRAN

2 Research Institute of Applied Sciences (RIAS)-ACECR, Tehran, I.R. IRAN


CoFe2O4 Magnetic Nano Particles (MNPs) were synthesized by an efficient method in aqueous medium with the particle sizes of about 20-50 nm. Then, a hybrid nanocomposite of polyaniline (PANI)-CoFe2O4 MNPs has been electrodeposited directly on a stainless steel wire by the potentiostatic method. Microscopic images of electrodeposited PANI and PANI-CoFe2O4 nanocomposite coatings were obtained by scanning electron microscope. The scanning electron microscopic images of polyaniline and its nanocomposite pointed out the influence of CoFe2O4 nanoparticlesin the electrodeposition of polyaniline. Dispersion of CoFe2O4 nanoparticles in electrolyte solution during the electrodeposition, creates a nanocomposite with a more surface area than pure polyaniline.


Main Subjects

[1] Ashoori R.C., Electrons in Artificial Atoms, Nature,379, p. 413 (1996).

[2] Moghaddam A.B., Nazari T., Badraghi J., Kazemzad M., Synthesis of ZnO Nanoparticles and Electrodeposition of Polypyrrole/ZnO Nanocomposite Film, Int. J. Electrochem. Sci., 4, p. 247 (2009).

[3] Nabid M.R., Golbabaee M., Moghaddam A.B., Mahdavian A.R., Amini M.M., Preparation of the
γ-Al2O3/PANI Nanocomposite via Enzymatic Polymerization, Polymer Composites, 30, p. 841 (2009).

[4] Siegel R.W., “Nanophase Materials: Synthesis, Structure, and Properties”, Springer Series in Material science, p. 65 (1994). 

[5] Vaezifar S., Faghihian H., Kamali M., Dehydrogenation of Isobutane Over Nanoparticles of Pt/Sn Alloy on Pt/Sn/Na-Y Catalyst: the Effect of Tin Precursor on the Catalyst Behavior, Iran. J. Chem. Chem. Eng., 28, p. 23 (2009).

[6] Tavasoli A., Irani M., Nakhaeipour A., Mortazavi Y., Khodadadi A.A., Dalai A.K., Preparation of a Novel Super Active Fischer-Tropsch Cobalt Catalyst Supported on Carbon Nanotubes, Iran. J. Chem. Chem. Eng., 28, p. 37 (2009).

[7] Chen J.P., Sorensen C.M., Klabunde K.J., Hadlipanayis G.C., Enhanced Magnetization of Nanoscale Colloidal Cobalt Particles, Phys. Rev. B, 51, p. 11527 (1995).

[8] Speliotis D.E., Magnetic Recording Beyond the First 100 Years, J. Magn. Magn. Mater., 193, p. 29 (1999).

[9] JeongU., Teng X., Wang Y., Yang H., Xia Y., Superparamagnetic Colloids: Controlled Synthesis and Niche Applications, Adv. Mater., 19, p. 33 (2007).

[10] Huang Z., Tang F., Zhang L., Effect of Porosity on the Ferroelectric Properties of Sol-Gel Prepared Lead Zirconate Titanate Thin Films, Thin Solid Films, 471, p. 105 (2005).

[11] Nabid M.R., Sedghi R., Moghaddam A.B., Barari M., Jamaat P.R., Safari N., Synthesis of Polyaniline/TiO2 Nanocomposites with Metallo Porphyrin and Metallophthalocyanine Catalysts, J. Porphyrins Phthalocyanines, 13, p. 980 (2009).

[12] Feng W., Bai X.D., Lian Y.Q., Liang J., Wang X.G., Yoshino K., Well-Aligned Polyaniline/Carbon-Nanotube Composite Films Grown by in-Situ Aniline Polymerization, Carbon, 41, p. 1551 (2003).

[13] Lira-Gautu M., Gomez-Romero P., Synthesis and Characterization of Intercalate Phases in the Organic-Inorganic Polyaniline/V2O5 System, J. Solid State Chem., 147, p. 601 (1999).

[14] Somani P., Kale B.B., Amalnerkar D.P., Charge Transport Mechanism and the Effect of Poling on the Current-Voltage Characteristics of Conducting Polyaniline-BaTiO3 Composites, Synth. Met., 106, p. 53 (1999).

[15] He Y., A Novel Emulsion Routeto Sub-Micrometer Polyaniline/Nano-ZnO Composite Fibers, Appl. Surf. Sci., 249, p. 1 (2005).

[16] Kinyanjui J.M., Wijeratne N.R., Hanks J., Hatchett D. W., Chemical and Electrochemical Synthesis of Polyaniline/Platinum Composites, Electrochim. Acta, 51, p. 2825 (2006).

[17] Maksimov Y.M., Kolyadko E.A., Shishlova A.V., Podlovchnko, B.I., Electrocatalytic Bbehavior of a Palladium-Polyaniline System Obtained by Electrodepositing Palladium into a Preliminarily Formed Polyaniline Film, Russian J. Electrochem., 37, p. 777 (2001).

[18] Drelinkiewicz A., Hasik M., Kloc M., Pd/Polyaniline as the Catalysts for 2-Ethylanthraquinone Hydrogenation. The Effect of Palladium Dispersion, Catal. Lett., 64, p. 41 (2000).

[18] Prasad G.K., Takei T., Yonesaki Y., Kumada N., Kinomura N., Hybrid Nanocomposite Based on NbWO6 Nanosheets and Polyaniline, Mat. Lett., 60, p. 3727 (2006).

[20] Su S.J., Kuramoto N., Processable Polyaniline-Titanium Dioxide Nanocomposites: Effect of Titanium Dioxide on the Conductivity, Synth. Met., 114, p. 147 (2000).

[21] Somani P.R., Marimuthu R., Mulik U.P., Sainkar S.R., Amalnerkar D.P., High Piezoresistivity and Its Origin in Conducting Polyaniliner TiO2 Composites, Synth. Met., 106, p. 45 (1999).

[22] Liu H., Xu F., Li L., Wang Y., Qiu H., A Novel CoFe2O4/Polyacrylate Nanocomposite Prepared via an in Situ Polymerization in Emulsion System, React. Funct. Polym., 69, p. 43 (2009).

[23] Bonini M., Lenz S., Falletta E., Ridi F., Carretti E., Fratini E., Wiedenmann A., Baglioni P., Acrylamide-Based Magnetic Nanosponges: A New Smart Nanocomposite Material, Langmuir, 24, p. 12644 (2008).

[24] Li Y., Yin D., Wang Z., Li B., Xue G., Controlling the Heterocoagulation Process for Fabricating
PS-CoFe2O4 Nanocomposite Particles, Colloid. Surf. A: Physicochem. Eng. Aspects, 339, p. 100 (2009).

[25] Jiang J., Ai L.H., Liu A.H., A Novel Poly(o-Anisidine)/CoFe2O4 Multifunctional Nanocomposite: Preparation, Characterization and Properties, Synth. Met., 160, p. 333 (2010).

[26] Vaezi M.R., Nikzad L., Yazdani B., Synthesis of CoFe2O4-Polyaniline and Evaluation of its Magnetic Properties, Int. J. Eng: Transactions B: Applications, 22, p. 381 (2009).

[27] Mahdavian A.R., Sehri Y., Mobarakeh H.S., Nanocomposite Particles with Core-Shell Morphology II. An Investigation into the Affecting Parameters on Preparation of Fe3O4-poly(butyl Acrylate-Styrene) Particles via Miniemulsion Polymerization, European Polym. J., 44, p. 2482 (2008).

[28] Mahdavian A.R., Ashjari M., Mobarakeh H.S., Nanocomposite Particles with Core-Shell Morphology. I. Preparation and Characterization of Fe3O4-Poly(butyl Acrylate-Styrene) Particles Via Miniemulsion Polymerization, J. Appl. Polym. Sci., 110, p. 1242 (2008).

[29] Ramajo L.A., Cristobal A.A., Botta P.M., Porto Lopez J.M., Reboredo M.M., Castro M.S., Dielectric and Magnetic Response of Fe3O4/Epoxy Composites, Composites Part A: Appl. Sci. Manufact., 40, p. 388 (2009). 

[30] Covaliu C.I., Matei C., Ianculescu A., JitaruI., Berger D., Fe3O4 and CoFe2O4 Nanoparticles Stabilized in Sodium Alginate Polymer, UPB Scientific Bulletin Series B: Chem. Mater. Sci., 71, p. 53 (2009).

[31] Lee C.F., Cou Y.H., Chiu W.Y., Synthesis and Morphology of Fe3O4/Polystyrene/Poly (Isopropylacrylamide-Co-Methyl Acrylate acid) Magnetic Composite Latex-2,2 '-Azobis (2-Methylpropionamidine) Dihydrochloride as Initiator,  J. Polym. Sci. Part A: Polym. Chem. 45, p. 3912 (2007).

[32] Mahmoudi M., Simchi A., Imani M., Cytotoxicity of Uncoated and Polyvinyl Alcohol Coated Superparamagnetic Iron Oxide Nanoparticles, J. Phys. Chem. C, 113, p. 9573 (2009).

[33] Lutz J.F., Stiller S., Hoth A., Kaufner L., Pison U., Cartier R., One-Pot Synthesis of PEGylated Ultrasmall Iron-Oxide Nanoparticles and Their in Vivo Evaluation as Magnetic Resonance Imaging Contrast Agents, Biomacromolecules, 7, p. 3132 (2006).

[34] Mateo-Mateo C., Vazquez-Vazquez C., Bujan-Nunez M.C., Lopez-Quintela M.A., Serantes D., Baldomir D., Rivas J., Synthesis and Characterization of CoFe2O4-PVP Nanocomposites, J. Non-Cryst. Solids, 354, p. 5236 (2008).

[35] Zhang M., Gao G., Li C.Q., Liu F.Q., Titania-Coated Polystyrene Hybrid Microballs Prepared with Miniemulsion Polymerization, Langmuir, 20, p. 1420 (2004).

[36] Stilwell D.E., Park S.M., Electrochemistry of Conductive Polymers, J. Electrochem. Soc., 135, p. 2254 (1988).

[37] Stilwell D.E., Park S.M., Electrochemistry of Conductive Polymers, J. Electrochem. Soc., 135, p. 2491 (1988).

[38] Moghaddam A.B., Ganjali M.R., Dinarvand R., Razavi T., Riahi S., Rezaei-Zarchi S., Norouzi P., Fabrication and Electrochemical Behavior of Single-Walled Carbon Nanotube/Graphite-Based Electrode, Mat. Sci. Eng. C, 29, p. 187 (2009).

[39] Granot E., Basnar B., Cheklakov Z., Katz E., Willner I., Enhanced Bioelectrocatalysis Using Single-Walled Carbon Nanotubes (SWCNTs)/Polyaniline Hybrid Systems in Thin-Film and Microrod Structures Associated with Electrodes, Electroanalysis, 18, p. 26 (2006).

[40] Gangadharan R., Anandan V., Zhang G., Optimizing the Functionalization Process for Nanopillar Enhanced Electrodes with GOx/PPY for Glucose Detection, Nanotechnology, 19, p. 395501 (2008).

[41] Collins P.G., Bradley K., Ishigami M., Zettle A., Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Science, 287, p. 1801 (2000).