Small but Mighty Incorporating Fe3O4 Nanoparticles into PES Membranes for Enhanced Water Treatment Efficiency

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, I.R. IRAN

2 District No.1, Arak Education Department, Education Department of Markazi Province, Ministry of Education, Arak, I.R. IRAN

Abstract

This study focused on developing a new membrane-type by incorporating magnetic iron oxide nanoparticles (Fe3O4) into a polyethersulfone (PES) matrix to create a Fe3O4/PES membrane. The synthesized membrane was characterized using various techniques, including SEM, Map, 3D images, TEM, XRD, and FTIR, to determine its structure and properties. The membrane's performance was evaluated by examining parameters such as water contact angle, membrane pore size and porosity, water content, Pure water flux (PWF), and salt rejection. The results showed that the Fe3O4/PES membrane outperformed the pure PES membrane regarding water flux and salt rejection. The membrane with a Fe3O4 concentration of 0.01wt.% had the highest flux value of 16.35 (L/m2h), while the virgin membrane's flux value was only 2.81 (L/m2h). Furthermore, the salt rejection of the modified membrane increased from 60% to 90% compared to the pure PES membrane.  It was observed that the Fe3O4 nanoparticles, which had a positive charge of 3-7 nm, tended to agglomerate and increase in size when the Fe3O4 concentration was increased, leading to a negative surface charge. By using fewer Fe3O4 nanoparticles, the Fe3O4/PES membrane achieved similar performance as other research, making it a more cost-effective option.

Keywords

Main Subjects


[1] Miller D.J., Dreyer D.R., Bielawski C.W., Paul D.R., Freeman B.D., Surface Modification of Water Purification Membranes, Angewandte Chemie International Edition, 56: 4662-4711 (2017).
[2] Tul Muntha S., Kausar A., Siddiq M., Advances in Polymeric Nanofiltration Membrane: A Review, Polymer-Plastics Technology and Engineering, 56: 841-856 (2017).
 [4] Elizalde C.N.B., Al-Gharabli S., Kujawa J., Mavukkandy M., Hasan S.W., Arafat H.A., Fabrication of Blend Polyvinylidene Fluoride/Chitosan Membranes for Enhanced Flux and Fouling Resistance, Separation and Purification Technology, 190: 68-76 (2018).
[5] Salehi M., Karimipour G., Montazerozohoori M., Ghaedi M., Mandanipour V., New Proton-Exchange Membrane (PEM) Based on the Modification of Sulfonated Polystyrene with MIL-53(Al)-NH2 for Direct-Methanol Fuel Cell, Iranian Journal of Chemistry and Chemical Engineering, 41(10): 4117-4126 (2022).
[6] Zangeneh H., Zinatizadeh A.A., Zinadini S., Feyzi M., Bahnemann D.W., Preparation and Characterization of a Novel Photocatalytic Self-Cleaning PES Nanofiltration Membrane by Embedding a Visible-Driven Photocatalyst Boron Doped-TiO2SiO2/CoFe2O4 Nanoparticles, Separation and Purification Technology, 209: 764-775 (2019).
[7] Daraei P., Madaeni S.S., Ghaemi N., Monfared H.A., Khadivi M.A., Fabrication of PES Nanofiltration Membrane by Simultaneous Use of Multi-Walled Carbon Nanotube and Surface Graft Polymerization Method: Comparison of MWCNT and PAA Modified MWCNT, Separation and Purification Technology, 104: 32-44 (2013).
[9] Modabberasl A., Pirhoushyaran T., Esmaeili-Faraj S.H., Synthesis of CoFe2O4 Magnetic Nanoparticles for Application in Photocatalytic Removal of Azithromycin from Wastewater, Scientific Reports, 12: 19171 (2022).
[10] Parvizi M.R., Saadati Z., Maleki A., Investigating the Performance of Nano Composite Membrane Pebax/TiO2 Nanoparticle Modified with Amino Silane in the Separation of CO2/CH4, Iran. J. Chem. Chem. Eng. (IJCCE), 42(3):754-773 (2023).
[11] Muthuraman G., Tow Teng T., Simultaneous Extraction and Stripping of Methylene Blue: A Liquid-Liquid Extraction and Bulk Liquid Membrane Approach, Iran. J. Chem. Chem. Eng. (IJCCE), 41(10): 3451-3462 (2022).
 [12] Gandomkar E., Bekhradinasab E., Sabbaghi S., Zerafat M.M.,  “Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles", World Academy of Science, Engineering and Technology, (2015).
[13] Gandomkar E., Sabbaghi S., Investigation of the Morphology of SiO2 Nanoparticles Using Different Synthesis Techniques World Academy of Science, Engineering and Technology, International Journal of Chemical and Molecular Engineering, 9(4): 2015 (2015).
[14] Fazlali A., Ghalehkhondabi V., Alahyarpur F., The Experimental Comparison between the Effect of Copper Oxide and Graphene Nanoparticles on Rheological Behavior and Thermal Properties of Engine Oil, Petroleum Science and Technology, 40: 803-821 (2022).
[15] Abdekhodaie M.J., Hemmati A.A., Influence of Formulation Parameters on the Release of Diclofenac Sodium from Matrices with Manufacturing Formulation Ingredients, Iranian Journal of Chemistry and Chemical Engineering, 21(2):  135-140(2002).
[16] Mohamadpour M., Pirdashti M., Shahrokhi B., Rostami A.A., Response Surface Methodology for the Evaluation of Lysozyme Partitioning in Poly (Vinyl Pyrrolidone) and Potassium Phosphate Aqueous Two-Phase System, Iranian Journal of Chemistry and Chemical Engineering, 38(5): 197-208 (2019).
[17] Hosseini E.S., Pirdashti M., Influence of the Molecular Weight of Polymer on the Poly Vinyl Pyrrolidone and Zinc Sulfate Phase Diagram of Aqueous Two-Phase Systems, Iranian Journal of Chemistry and Chemical Engineering, 40(2): 627-637 (2021).
[18] Farahani F., Fazlali A., Kazazi M., Chemical Deposition of Nickel Hexacyanoferrate Nanoparticles on a Stainless-Steel Mesh Substrate for Supercapacitor Application, Journal of Advanced Materials and Technologies, 11: 45-56(2022).
[20] Daraei P., Madaeni S.S., Ghaemi N., H. Ahmadi Monfared, Khadivi M.A., Fabrication of PES Nanofiltration Membrane by Simultaneous use of Multi-Walled Carbon Nanotube and Surface Graft Polymerization Method: Comparison of MWCNT and PAA Modified MWCNT, Separation and Purification Technology, 104: 32-44(2013).
[21] Daraei P., Madaeni S.S., Ghaemi N., Khadivi M.A., Astinchap B., Moradian R., Fouling Resistant Mixed Matrix Polyethersulfone Membranes Blended with Magnetic Nanoparticles: Study of Magnetic Field Induced Casting, Separation and Purification Technology, 109: 111-121 (2013).
[22] Ghaemi N., Madaeni S.S., P Daraei., H Rajabi., Zinadini S., Alizadeh A., Heydari R., Beygzadeh M., Ghouzivand S., Polyethersulfone Membrane Enhanced with Iron Oxide Nanoparticles for copper Removal from Water: Application of New Functionalized Fe3O4 Nanoparticles, Chemical Engineering Journal, 263: (2015) 101-112.
[23] Aghaaliakbari B., Jafari Jaid A., Zeinali M.A.A., Computational Simulation of Ablation Phenomena in Glass-filled Phenolic Composites, Iranian Journal of Chemistry and Chemical Engineering, 34(1): 97-106 (2015).
[24] Rahmanzadeh M., Rezakhani N., Zeinali Danalou S., Rostami F., Khosharay S., Cetyltrimethylammonium Bromide (CTAB), Additives and Their Mixtures: The Experimental and Modeling Study, Iranian Journal of Chemistry and Chemical Engineering, 41(2): 555-565(2022).
[25] S Zinadini., Zinatizadeh A.A., M Rahimi., Vatanpour V., Zangeneh H., Preparation of a Novel Antifouling Mixed Matrix PES Membrane by Embedding Graphene Oxide Nanoplates, Journal of Membrane Science, 453: 292-301(2014).
[26] Javaheri F., S Hassanajili., Synthesis of Fe3O4@SiO2@MPS@P4VP Nanoparticles for Nitrate Removal from Aqueous Solutions, Journal of Applied Polymer Science, 133: (2016).
[27] Hebbar R.S., Isloor A.M., Ananda K., Abdullah M.S., Ismail A.F., Fabrication of a Novel Hollow Fiber Membrane Decorated with Functionalized Fe2O3 Nanoparticles: Towards Sustainable Water Treatment and Biofouling Control, New Journal of Chemistry, 41: 4197-4211(2017).
[28] Esmaeili-Faraj S.H., Hassanzadeh A., Shakeriankhoo F., Hosseini S., Vaferi B., Diesel fuel Desulfurization
 by Alumina/Polymer Nanocomposite Membrane: Experimental Analysis and Modeling by the Response Surface Methodology
, Chemical Engineering and Processing - Process Intensification, 164: 108396 (2021).
[29] Alenazi N.A., M Hussein.A., Alamry K.A., Asiri A.M., Modified Polyether-Sulfone Membrane: A Mini Review, Designed Monomers and Polymers, 20: 532-546 (2017).
[30] Azile N., Anele M., Richard M.M., Philiswa N.N., Wastewater Treatment Using Membrane Technology, in: Y. Taner (Ed.) Wastewater and Water Quality, IntechOpen, Rijeka, Ch. 2., (2018).
[31] Barakat M., New Trends in Removing Heavy Metals from Industrial Wastewater, Arabian Journal of Chemistry, 4: 361-377 (2011).
[32] G. E., “Removal Dye Pollutions & turbidity of inorganic & Organic Medium Using Nanostructures", In Chemical Engineering.,  Engineering, Shiraz University, Shiraz University,  2014.
[33] Wei Y., Han B., Hu X., Lin Y., Wang X., Deng X., Synthesis of Fe3O4 Nanoparticles and their Magnetic Properties, Procedia Engineering, 27 632-637(2012).
[34] Prabhu Y.T., Rao K.V., Kumari B.S.,. Kumar V.S.S, Pavani T., Synthesis of Fe3O4 Nanoparticles and Its Antibacterial Application, International Nano Letters, 5: 85-92 (2015).
[35] Wu W., He Q., Jiang C., Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies, Nanoscale Research Letters, 3: 397 (2008).
[38] Deboli F., Van der Bruggen B., Donten M.L., A Versatile Chemistry Platform for the Fabrication of Cost-Effective Hierarchical Cation and Anion Exchange Membranes, Desalination, 535: 115794(2022).
[39] Fazlali A., Van der Bruggen B., Hosseini S., Afshari M., Farahani S.K., Bandehali S., Bagheripour E., Mixed Matrix PES-Based Nanofiltration Membrane Decorated by (Fe3O4–Polyvinylpyrrolidone) Composite Nanoparticles with Intensified Antifouling and Separation Characteristics, Chemical Engineering Research and Design, 147: 390-398 (2019).
[40] Li J.F., Xu Z.L., Yang H., Feng C.P., Shi J.H., Hydrophilic Microporous PES Membranes Prepared by PES/PEG/DMAc Casting Solutions, Journal of Applied Polymer Science, 107: 4100-4108  (2008).
[41] Zhang X., Jin P., Xu D., Zheng J., Zhan Z.-M., Gao Q., S Yuan., Z Xu.-L., Van der Bruggen B., Triethanolamine Modification Produces Ultra-Permeable Nanofiltration Membrane with Enhanced Removal Efficiency of Heavy Metal Ions, Journal of Membrane Science, 644:120127(2022).
[42] Zheng J., R Zhao., Uliana A.A., Liu Y., de Donnea D., Zhang X., Xu D., Gao Q., Jin P., Y Liu., Volodine A., Zhu J., Van der Bruggen B., Separation of Textile Wastewater Using a Highly Permeable Resveratrol-Based Loose Nanofiltration Membrane with Excellent Anti-Fouling Performance, Chemical Engineering Journal, 434: 134705 (2022).
[43] Zhang X., J Zheng., Jin P., Xu D., S Yuan., Zhao R., S Depuydt., Gao Y., Xu Z.-L., Van der Bruggen B., A PEI/TMC Membrane Modified with an Ionic Liquid with Enhanced Permeability and Antibacterial Properties for the Removal of Heavy Metal Ions, Journal of Hazardous Materials, 435: 129010(2022).
[44] Liu J., Dai C., Hu Y., Aqueous Aggregation Behavior of Citric Acid Coated Magnetite Nanoparticles: Effects of pH, Cations, Anions, And Humic Acid, Environmental Research, 161: 49-60 (2018).
[45] Singh D., Gautam R.K., R Kumar., Shukla B.K., Shankar V., V Krishna., Citric Acid Coated Magnetic Nanoparticles: Synthesis, Characterization and Application in Removal of Cd (II) Ions from Aqueous Solution, Journal of water process engineering, 4: 233-241 (2014).
[46] Lu X., Niu M., Qiao R., Gao M., Superdispersible PVP-Coated Fe3O4 Nanocrystals Prepared by a “one-Pot” Reaction, The Journal of Physical Chemistry B, 112: 14390-14394 (2008).
[48] Barakat M.A., New Trends in Removing Heavy Metals from Industrial Wastewater, Arabian Journal of Chemistry, 4: 361-377(2011).
[49] Baghbanzadeh M., Rana D., Matsuura T., Lan C.Q., Effects of Hydrophilic CuO Nanoparticles on Properties and Performance of PVDF VMD Membranes, Desalination, 369: (2015) 75-84.
[50] Boughdiri A., Ounifi I., Chemingui H., Ursino C., Gordano A., Zouaghi M.O., A Hafiane., Figoli A., Ferjani E., A Preliminary Study on Cellulose Acetate Composite Membranes: Effect of Nanoparticles Types in their Preparation and Application, Materials Research Express, (2021).
[51] Yip N.Y., Tiraferri A., W. Phillip A., J Schiffman.D., Elimelech M., High Performance Thin-Film Composite Forward Osmosis Membrane, Environmental Science & Technology, 44: 3812-3818 (2010).
[55] Huang Z.-H., Zhang X., Wang Y.-X., Sun J.-Y., Zhang H., Liu W.-L., Li M.-P., Ma X.-H., Xu Z.-L., Fe3O4/PVDF Catalytic Membrane Treatment Organic Wastewater with Simultaneously Improved Permeability, Catalytic Property and Anti-Fouling, Environmental Research, 187: 109617 (2020).
[59] Hołda A.K., Vankelecom I.F.J., Understanding and Guiding the Phase Inversion Process for Synthesis of Solvent Resistant Nanofiltration Membranes, Journal of Applied Polymer Science, 132: (2015) n/a-n/a.
[60] Bahramian A., Danesh A., Prediction of Solid–Fluid Interfacial Tension and Contact Angle, Journal of Colloid and Interface Science, 279: 206-212 (2004).
[61] Long J., Hyder M., Huang R., Chen P., Thermodynamic Modeling of Contact angles on Rough, Heterogeneous Surfaces, Advances in Colloid and Interface Science, 118:  173-190 (2005)
[62] Lv C., Su Y., Wang Y., Ma X., Sun Q., Jiang Z., Enhanced Permeation Performance of Cellulose Acetate Ultrafiltration Membrane by Incorporation of Pluronic F127, Journal of Membrane Science, 294: 68-74 (2007).
[63] Yu H., Zhang Y., X Sun., Liu J., Zhang H., Improving the Antifouling Property of Polyethersulfone Ultrafiltration Membrane by Incorporation of Dextran Grafted Halloysite Nanotubes, Chemical Engineering Journal, 237: 322-328 (2014)
[64] Huang F., Wang Q., Wei Q., Gao W., Shou H., Jiang S., Dynamic Wettability and Contact Angles of Poly (Vinylidene Fluoride) Nanofiber Membranes Grafted with Acrylic Acid, Express Polymer Letters, 4: (2010).
[65] C Kee.M., Idris A., Modification of Cellulose Acetate Membrane Using Monosodium Glutamate Additives Prepared by Microwave Heating, Journal of Industrial and Engineering Chemistry, 18: 2115-2123(2012).
[66] Zhao Y.-H., Zhu B.-K., Ma X.-T., Xu Y.-Y., Porous Membranes Modified by Hyperbranched Polymers: I. Preparation and Characterization of PVDF Membrane Using Hyperbranched Polyglycerol as Additive, Journal of Membrane Science, 290: 222-229 (2007).
[67] Chan M., Ng S., Effect of Membrane Properties on Contact AngleAIP Conference Proceedings, AIP Publishing LLC,, 2016(1): 020035 (2018).
[68] Vatanpour V., Madaeni S.S., Moradian R., S Zinadini., Astinchap B., Fabrication and Characterization of Novel Antifouling Nanofiltration Membrane Prepared from Oxidized Multiwalled Carbon Nanotube/Polyethersulfone Nanocomposite, Journal of Membrane Science, 375: 284-294 (2011).
[69] Hegab H.M., Zou L., Graphene Oxide-Assisted Membranes: Fabrication and Potential Applications in Desalination and Water Purification, Journal of Membrane Science, 484: 95-106 (2015).
[70] Wei X., Xu X., Wu J., Li C., Chen J., Lv B., Zhu B., Xiang H., SiO2‐Modified Nanocomposite Nanofiltration Membranes with High Flux and Acid Resistance, Journal of Applied Polymer Science, 136: 47436 (2019).
[71] Al-Rashdi B., Johnson D., Hilal N., Removal of Heavy Metal Ions by Nanofiltration, Desalination, 315:  2-17 (2013).
[72] Wolansky G., Marmur A., Apparent Contact Angles on Rough Surfaces: The Wenzel Equation Revisited, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 156: 381-388 (1999).
[73] Drelich J.W., Contact Angles: From Past Mistakes to New Developments through Liquid-Solid Adhesion Measurements, Advances in Colloid and Interface Science, 267: 1-14 (2019).
[74] Moghadassi A., Moradi S., Bandehali S., Fabrication of Antifouling Mixed Matrix NF Membranes by Embedding Sodium Citrate Surfactant Modified-Iron Oxide Nanoparticles, Korean Journal of Chemical Engineering, 37: 1963-1974 (2020).
[75] Bagheripour E., Moghadassi A., Hosseini S.M., Incorporated Poly Acrylic Acid-Co-fe3o4 Nanoparticles Mixed Matrix Polyethersulfone Based Nanofiltration Membrane in Desalination Process, International Journal of Engineering, 30  821-829 (2017).
[76] Ansari S., Moghadassi A., Hosseini S.M., A New Approach to Tailoring the Separation Characteristics of Polyethersulfone Nanofiltration Membranes by 8-Hydroxyquinoline Functionalized Fe3O4 Nanoparticles, Korean Journal of Chemical Engineering, 37: 2011-2019 (2020).