New Proton-Exchange Membrane (PEM) Based on the Modification of Sulfonated Polystyrene with MIL-53(Al)-NH2 for Direct-Methanol Fuel Cell

Document Type : Research Article


1 Department of Chemistry, Yasouj University, Yasouj, I.R. IRAN

2 Department of Applied Chemistry, University of Gonabad, Gonabad, I.R. IRAN


In this study, modified sulfonated polystyrene (SPS) was used as a base for membrane fabrication in Direct Methanol Fuel Cells (DMFCs). The sulfonated polystyrene (SPS) was prepared using ethylsulfate and polystyrene with sulfate attached to the para-position of some phenyl groups in polystyrene backbone and conducted by polyethylene (PE) and different amounts of MIL-53(Al)-NH2 as metal-organic material, to obtain SPS-PE-MIL-53 as a novel proton-exchange membrane. The membranes were characterized using FT-IR spectroscopy, SEM, and TGA analysis. The proton conductivity, water uptake, oxidative resistance, ionic conductivity, and methanol permeability of the membranes were examined to assess their performance in a direct methanol fuel cell. The modified membrane containing 1% wt SPS, 1% wt PE, and 0.25% wt MIL-53 showed relatively better performance than the other prepared membranes with the selectivity factor of 7.17 × 104 S.s/cm3 and a maximum peak power density of 17.04 mW/cm2 with a maximum current density of 115.38 mA/cm2.


Main Subjects

[2] Shukla A., Dhanasekaran P., Sasikala S., Nagaraju N., Bhat S.D., Pillai V.K., Nanocomposite Membrane Electrolyte of Polyaminobenzene Sulfonic Acid Grafted Single Walled Carbon Nanotubes with Sulfonated Polyether Ether Ketone for Direct Methanol Fuel Cell, Int. J. Hydrog. Energy., 44(50): 27564-27574 (2019).
[4] Wang Y, Ruiz Diaz D.F, Chen K. S, Wang Z, Adroher X.C. Materials, Technological Status, and Fundamentals of PEM Fuel Cells - A Review, Mater Today., 32: 178-203 (2020).
[5] Khammarnia S., Akbari A., Ekrami-Kakhki M.S., Saffari J. Enhanced Catalytic Activity of Pt-NdFeO3 Nanoparticles Supported on Polyaniline-Chitosan Composite Towards Methanol Electro-Oxidation Reaction, J  Nanostruct, 10(2): 239-257‏ (2020).
[7] Ahn C.Y., Ahn J., Kang S.Y., Kim O.H., Lee D.W., Lee J.H., Goo Sh. J, Chang Hyun L,  Cho Y-H, Sung Y.E., Enhancement of Service Life of Polymer Electrolyte Fuel Cells through Application of Nanodispersed Ionomer, Science advances., 6: 1-9 (2020).
[8] Ekrami-Kakhki M.S., Farzaneh N., Abbasi S., Makiabadi B. Electrocatalytic Activity of Pt Nanoparticles Supported on Novel Functionalized Reduced Graphene Oxide-Chitosan for Methanol Electrooxidation, J. Mater. Sci.: Mater. Electron., 28(17): 12373-12382 (2017).‏
[10] Rasheed, R.K.A., Liao, Q., Caizhi, Z., Chan, S.H., A Review on Modelling of High Temperature Proton Exchange Membrane Fuel Cells (HT-PEMFCs), Int. J. Hydrog. Energy, 42(5): 3142- 3165 (2017).
[11] Cai W., Fan K., Li J., Ma L., Xu G., Xu S., Ma L., Cheng H., A Bi-Functional Polymeric Nano-Sieve Nafion Composite Membrane: Improved Performance for Direct Methanol Fuel Cell Applications, Int. J. Hydrog. Energy., 41(38): 17102- 17111 (2016).
[12] Müller M., Kimiaie N., Glüsen A., Direct Methanol Fuel Cell Systems for Backup Power–Influence of the Standby Procedure on the Lifetime, Int. J. Hydrog. Energy, 39(36): 21739-21745 (2014).
[13] Escudero-Cid R., Montiel M., Sotomayor L., Loureiro B., Fatás E., Ocón P., Evaluation of Polyaniline-Nafion® Composite Membranes for Direct Methanol Fuel Cells Durability Tests, Int. J. Hydrog. Energy., 40(25): 8182 (2015).
[14] Nasiri M., Atabaki F., Ghaemi N., Seyedzadeh Z., Fabrication and Characterization of Proton Conductive Membranes Based on Poly(methyl methacrylate-co-maleic anhydride), Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 43-57 (2020).
[17] Yuan T., Pu L., Huang Q., Zhang H., Li X., Yang H., An Effective Methanol-Blocking Membrane Modified with Graphene Oxide Nanosheets for Passive Direct Methanol Fuel Cells, Electrochim. Acta, 117: 393-397 (2014).
[18] Kim D.J., Hwang H.Y., Jung S.B., Nam S.Y., Sulfonated Poly (Arylene Ether Sulfone)/Laponite-SO3H Composite Membrane for Direct Methanol Fuel Cell, J. Ind. Eng. Chem., 18(1): 556-562 (2012).
[19] Li C., Sun G., Ren S., Liu J., Wang Q., Wu Z., Sun H. Jin W., Casting Nafion–Sulfonated Organosilica Nano-Composite Membranes used in Direct Methanol Fuel Cells, J. Membr. Sci., 272(1-2): 50-57 (2006).
[21] Luo Q., Zhang H., Chen J., You D., Sun C., Zhang Y., Preparation and Characterization of Nafion/SPEEK Layered Composite Membrane and its Application in Vanadium Redox Flow Battery, J. Membr. Sci., 325(2): 553-558 (2008)
[22] Li C., Xiao L., Jiang Z., Tian X., Luo L., Liu W., Xu Z.L., Yang H., Jiang Z.J., Sulfonic Acid Functionalized Graphene Oxide Paper Sandwiched in Sulfonated Poly (Ether Ether Ketone): A Proton Exchange Membrane with High Performance for Semi-Passive Direct Methanol Fuel Cells, Int. J. Hydrog. Energy, 42(26): 16731-16740 (2017).
[23] Yen C.Y., Lee C.H., Lin Y.F., Lin H.L., Hsiao Y.H., Liao S.H., Chuang C.Y., Ma C.C.M., Sol–Gel Derived Sulfonated-Silica/Nafion® Composite Membrane For Direct Methanol Fuel Cell, J. Power Sources., 173(1): 36-44 (2007)
[24] Prapainainar P., Maliwan S., Sarakham K., Du Z., Prapainainar C., Holmes S.M., Kongkachuichay P., Homogeneous Polymer/Filler Composite Membrane by Spraying Method for Enhanced Direct Methanol Fuel Cell Performance, Int. J. Hydrog. Energy, 43(31): 14675-14690 (2018).
[25] Hasanabadi, N., Ghaffarian, S. R., Hasani-Sadrabadi, M.M., Magnetic Field Aligned Nanocomposite Proton Exchange Membranes based on Sulfonated Poly (Ether Sulfone) and Fe2O3 Nanoparticles for Direct Methanol Fuel Cell Application, Int. J. Hydrog. Energy., 36(23): 15323-15332 (2011).
[27] Ranjani M., Pannipara M., Al-Sehemi A. G., Vignesh A., Chitosan/Sulfonated Graphene Oxide/Silica Nanocomposite Membranes for Direct Methanol Fuel Cells, Solid State Ion., 338: 153-160 (2019).
[28] Wang S., Luo H., Li X., Shi L., Cheng B., Zhuang X., Li Z., Amino Acid-Functionalized Metal Organic Framework with Excellent Proton Conductivity for Proton Exchange Membranes, Int J Hydrogen Energy, 46: 1163-1173(2021).
[29] Tsai J.C., Cheng H.P., Kuo J.F., Huang Y.H., Chen C.Y., Blended Nafion®/SPEEK Direct Methanol Fuel Cell Membranes for Reduced Methanol Permeability, J. Power Sources, 189(2): 958-965 (2009).
[30] Sasikala S., Meenakshi S., Bhat S.D., Sahu A.K., Functionalized Bentonite Clay-sPEEK Based Composite Membranes for Direct Methanol Fuel Cells, Electrochim. Acta, 135: 232-241 (2014).
[31] Batalha J.A.F.L., Dahmouche K., Sampaio R.B., de Souza Gomes A., Structure and Properties of New sPEEK/Zirconia/Protic Ionic Liquid Membranes for Fuel Cell Application, Macromol Mater Eng., 302: 1600301 (2017).
[32] Ponce M.L., Prado L.A.S.A., Ruffmann B., Richau K., Mohr R., Nunes S.P., Reduction of Methanol Permeability in Polyetherketone–Heteropolyacid Membranes, J. Membr. Sci., 217: 5-15 (2003).
[33 Venkatesan P.N., Dharmalingam S., Effect of Zeolite on SPEEK/Zeolite Hybrid Membrane as Electrolyte for Microbial Fuel Cell Applications, RSC Adv., 5: 84004-84013 (2015).
[34] Beydaghi H., Javanbakht M., Bagheri A., Salarizadeh P., Ghafarian-Zahmatkesh H., Kashefi S., Kowsari E., Novel Nanocomposite Membranes Based on Blended Sulfonated Poly (Ether Ether Ketone)/Poly (Vinyl Alcohol) Containing Sulfonated Graphene Oxide/Fe3O4 Nanosheets for DMFC Applications, RSC Adv., 5: 74054-74064 (2015).
[35] Yaghi O.M., O'Keeffe M., Ockwig N.W., Chae H.K., Eddaoudi M., Kim J., Reticular Synthesis and the Design of New Materials, Nature., 423: 705-714 (2003).
[36] Li J.R., Sculley J., Zhou H.C., Metal–Organic Frameworks for Separations, Chem. Rev., 112: 869-932 (2012).
[37] Shigematsu A., Yamada T., Kitagawa H., Wide Control of Proton Conductivity in Porous Coordination Polymers, J. Am. Chem. Soc., 133(7): 2034-2036 (2011).
[38] Makowski H.S., Lundberg R.D., Singhal G.H., EXXON Research and Engineering Company, US pat., 19(2): 310 (1975).
[39] Martins C.R., Ruggeri G., De Paoli M.A., Synthesis in Pilot Plant Scale and physical Properties of Sulfonated Polystyrene, J. Braz Chem. Soc., 14: 797-802 (2003).
[40] Mandanipour V., Noroozifar M., Modarresi-Alam A. R., Preparation of Modified Sulfonated Poly (Styrene Divinylbenzene) with Polyaniline as a New Polymer Electrolyte Membrane for Direct Methanol Fuel Cell, Int. J. Electrochem., 11: 5302-5317 (2016).
[43] Li Y., Hoorfar M., Shen K., Fang J., Yue X., Jiang Z., Development of a Crosslinked Pore-Filling Membrane with an Extremely Low Swelling Ratio and Methanol Crossover for Direct Methanol Fuel Cells, Electrochim. Acta, 232: 226-235 (2017).