Optimization of a Sustainable Keratin Extraction Process from Waste Slaughterhouse Feathers: A Practice and Business Model Innovation

Document Type : Research Article

Authors

1 Research Unit UR17ES30 "Virology & Antiviral Strategies", Higher institute of Biotechnology, University of Monastir, Monastir, TUNISIA

2 Research Unit UR17ES30 "Virology & Antiviral Strategies", Higher Institute of Biotechnology, University of Monastir, Monastir, TUNISIA

3 Hospital Center of Arpajon, Arpajon, FRANCE

4 University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Monastir 5000, TUNISIA

5 Laboratory of Bio-Resources: Integrative Biology and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, TUNISIA

Abstract

The extraction of keratin from natural feathers has been studied for its use in various cosmetics and drug delivery applications. There are various reducing agents to dissolve the hard keratin such as sodium dodecyl sulfate and 2-mercaptoethanol, in the present work, a novel extraction methodhas been developed using sodium sulphite, sodium bisulphite, and sodium dodecyl sulfate in the presence of urea, 2-mercaptoethanol, Ethylenediaminetetraacetic acid (EDTA), and thiourea. To increase extraction yield, the weight of feathers, time of incubation, pH, and temperature were investigated using a Central Composite Design and Mixture plan for Optimization. With the present process, we evaluated the apport of keratin treatment and extraction techniques utilizing sodium sulphite, sodium bisulphite, and sodium dodecyl sulfate in the presence of urea, 2-mercaptoethanol, Ethylenediaminetetraacetic acid (EDTA), and thiourea. The percentage yield and keratin concentration were measured using UV-Vis absorbance, Bradford, and Biuret assays. Then, the protein profile and their functional groups were characterized using Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Fourier Transform Infrared Spectroscopy (FTIR). The purpose was to compare the different procedures in terms of keratin protein quality and quantity, as well as their cost-effectiveness, and to determine the optimum conditions for the keratin extraction process. The results proved that the yield of white chicken feathers keratin (81.2 %) increased using sodium sulphite (1M), sodium bisulphite (0.1 M), and Sodium Dodecyl Sulfate (0.1 M).  The highest protein production was measured at 80°C in 10 h with 5 g of feathers at pH 10. This process of keratin extraction can be used from the laboratory to industrial production with high recoverability and stable properties.

Keywords

Main Subjects


[1] Akpor O.B., Odesola D.E., Thomas R.E., Oluba O.M., Chicken Feather Hydrolysate as Alternative Peptone Source for Microbial Cultivation, F1000Researchs., 7 (3): 1918 (2018).
[2] Oluba O.M., Obi C.F., Akpor O.B., Ojeaburu S.I., Ogunrotimi F.D., Adediran A.A., Oki M., Fabrication and Characterization of Keratin Starch Biocomposite Film from Chicken Feather Waste and Ginger Starch, Sci. Rep., 11 (1): 8768 (2021).
[3] Endo R., Kamei K., Iida I., Kawahara Y., Dimensional Stability of Waterlogged Wood Treated with Hydrolyzed Feather Keratin, J. Archaeol. Sci., 35(5): 1240-1246 (2008).
[4] Papadopoulos M.C., Processed Chicken Feathers as Feedstuff for Poultry and Swine. A Review, Agric. Wastes., 14(4): 275–290 (1985).
[5] Mokrejš P., Huťťa M., Pavlačková J., Egner P., Preparation of Keratin Hydrolysate from Chicken Feathers and Its Application in Cosmetics, J. Visualized Exp., 129: e56254 (2017).
[6] Yeo I., Lee Y.J., Song K., Jin H.S., Lee J.E., Kim D., Lee D.W., Kang N.J., Low-Molecular Weight Keratins with Anti-Skin Aging Activity Produced by Anaerobic Digestion of Poultry Feathers with Fervidobacterium Islandicum AW-1, J. Biotechnol., 271: 17-25 (2018).
[7] Sinkiewicz I., Śliwińska A., Staroszczyk H., Kołodziejska I. Alternative Methods of Preparation of Soluble Keratin from Chicken Feathers, Waste Biomass Valorization., 8: 1043-1048 (2017).
[8] Sharma S., Gupta A., Kumar A., Kee C.G., Kamyab H., Saufi S.M. An Efficient Conversion of Waste Feather Keratin into Eco-Friendly Bioplastic Film, Clean Technol. Environ. Policy., 20: 2157-2167 (2018).
[9] Pulidori E., Micalizzi S., Bramanti E., Bernazzani L., Duce C., De Maria C., Montemurro F., Pelosi C., De Acutis A., Vozzi G., Tinè MR., One-Pot Process: Microwave-Assisted Keratin Extraction and Direct Electrospinning to Obtain Keratin-Based Bioplastic. Int. J. Mol. Sci., 22(17): 9597 (2021)
[10] Joardar J.C., Rahman M.M., Poultry Feather Waste Management and Effects on Plant Growth. Int. J. Recycl. Org. Waste Agric., 7: 183-188 (2018).
[11] Chilakamarry C.R., Mahmood S., Saffe S.N.B.M., Arifin M.A.B., Gupta A., Sikkandar M.Y., Begum S.S., Narasaiah B., Extraction and Application of Keratin from Natural Resources: A Review, Biotech., 11(5): 220 (2021).
[12] Zoccola M., Aluigi A., Patrucco A., Vineis C., Forlini F., Locatelli P., Sacchi M C., Tonin C., Microwave-Assisted Chemical-Free Hydrolysis of Wool Keratin, Text. Res. J., 82(19): 2006-2018 (2012).
[13] Feroz S., Muhammad N., Ranayake J., Dias G., Keratin-Based Materials for Biomedical Applications, Bioact. Mater., 5(3): 496-509 (2020).
[14] Zhang Q., Liebeck B.M., Yan K., Demco D.E., Körner A., Popescu C., Alpha-Helix Self-Assembly of Oligopeptides Originated from Beta-Sheet Keratin, Macromol. Chem. Phys., 213(24): 2628-2638 (2012).
[15] Badrulzaman S.Z.S., Aminan A.W., Ramli A.N.M., Cheman R., Wan Azelee N.I., Extraction and Characterization of Keratin from Chicken and Swiftlet Feather, Mater. Sci. Forum., 1025: 157-162 (2021).
[16] Serag E., El-Aziz A.M.A., El-Maghraby A., Taha N.A., Electrospun Non-Wovens Potential Wound Dressing Material Based on Polyacrylonitrile/Chicken Feathers Keratin Nanofiber, Sci Rep., 12: 15460 (2022).
[17] Sun K., Guo J., He Y., Song P., Xiong Y., Wang R.M., Fabrication of Dual-Sensitive Keratin-Based Polymer Hydrogels and their Controllable Release Behaviors, J. Biomater. Sci., Polym. Ed., 27 (18): 1926-1940 (2016).
[19] Kamarudin N.B., Sharma S., Gupta A., Kee C.G., Chik S.M.S.B.T., Gupta R., Statistical Investigation of Extraction Parameters of Keratin from Chicken Feather Using Design-Expert, 3 Biotech., 7(2): 1-9 (2017).
[20] Poole A.J., Lyons R.E., Church J.S., Dissolving Feather Keratin Using Sodium Sulfide for Bio-Polymer Applications, J. Polym. Environ., 19(4): 995-1004 (2011).
[21] Taylor M.M., Diefendorf E.J., Phillips J.G., Feairheller S.H., Bailey D.G., Wet Process Technology – I. Determination of Precision for Various Analytical Procedures, J. Am. Leather Chem. Assoc., 81: 4-18 (1986).
[22] Pilehvar S., Arnhof M., Pamies R., Valentini L., Kjøniksen A.L., Utilization of Urea as an Accessible Superplasticizer on the Moon for Lunar Geopolymer Mixtures, J. Cleaner Prod., 247: 119177 (2020).
[23] Bertsch A., Coello N., A Biotechnological Process for Treatment and Recycling Poultry Feathers as a Feed Ingredient, Bioresour. Technol., 96(15): 1703-1708 (2005).
[25] Ramagli L S., Rodriguez L V., Quantitation of Microgram Amounts of Protein in Two-Dimensional Polyacrylamide Gel Electrophoresis Sample Buffer, Electrophoresis., 6(11): 559–563 (1985).
[26] Shevchenko A., Wilm M., Vorm O., Mann M., Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels, Anal. Chem., 68(5): 850-858 (1996).
[27] Majidi B., Fathi N.M., Saeedian S.,  Expression and Purification of Brucella spp.Lumazine Synthase Decameric Carrier in Fusion to Extracellular Domain of Influenza M2E Protein, Iran. J. Chem. Chem. Eng. (IJCCE), 40(6): 2061-2068 (2021).
[29] Oakley B.R., Kirsch D.R., Morris N.R., A Simplified Ultrasensitive Silver Stain for Detecting Proteins in Polyacrylamide Gels, Anal. Biochem., 105: 361-363(1980).
[30] Hanafi F., Sadif N., Assobhei O., Mountadar M., Olive Oil Mill Wastewater Treatment by Means of Electrocoagulation with Punts Aluminum Electrodes, Rev. Sci. Eau., 22: 473-485 (2009).
[31] Zhou J., Liu X., Huang K., Dong M., Jiang H., Application of the Mixture Design to Design the Formulation of Pure Cultures in Tibetan kefir, Agric. Sci. China., 6(11): 1383-1389 (2007).
[32] Khadijeh P., Gholam K., Farhang M., Fereshteh R., Isolation, Identification and Optimization of Enhanced Production of Laccase from Galactomyces Geotrichum under Solid-State Fermentation, Prep. Biochem. Biotechnol., 51(7): 659-668 (2021).
[33] Floris A., Slangen K., Method for Producing a Low reducing Agent-Containing Keratin and Products Thereof. U.S. Patent Application No. 11/791,739 (2005).
[34] Coward-Kelly G., Agbogbo K., Holtzapple T., Lime treatment of Keratinous Materials for the Generation of Highly Digestible Animal Feed: 2. Animal Hair,  Bioresour. Technol., 97: 1344-1352 (2006).
[35] Zhang J., Li Y., Li J., Zhao Z., Liu X., Li Z., Han Y., Hu J., Chen A., Isolation and Characterization of Biofunctional Keratin Particles Extracted from Wool Wastes, Powder.Technol., 246: 356-362 (2013).
[36] Haroune S., Rycerz L., Berkani M., Synthesis of Gadolinium(III) Bromide and Modeling by the Experimental Design Method, Iran. J. Chem. Chem. Eng. (IJCCE), 39(3): 49-59 (2020).
[37] Habib M., Imen A., Nahla H., Dhaker F., Amina B., Sami A., Improvement of Biomass Production and Glucoamylase Activity by Candida Famata Using Factorial Design, Biotechnol. Appl. Biochem., 63(4): 572-80 (2016).
[38] Shavandi A., Silva H., Bekhit A., Bekhit A., Keratin: Dissolution, Extraction, and Biomedical Application, Biomater. Sci., 5(9):1699-1735 (2017).
[39] Tonin C., Aluigi A., Vineis C., Varesano A., Montarsolo A., Ferrero F., Thermal and Structural Characterization of Poly(Ethylene-Oxide)/Keratin Blend Films. J. Therm. Anal. Calorim., 89(2): 601-608 (2007).
[40] Zandevakili S.,  Akhondi M.R., Raouf Hosseini., S.M.,  Leaching Optimization of Sarcheshmeh Copper Concentrate by Application of Taguchi Experimental Design Method, Iran. J. Chem. Chem. Eng. (IJCCE), 39(6): 229-236 (2020).