Density Functional Theory and Molecular Dynamic Studies About Effects of Functionalization and Surface Modification of Graphene on Adsorption of Phosgene

Document Type : Research Article

Authors

Department of Chemistry, Faculty of Science, University of Zabol, Zabol, I.R. IRAN

Abstract

Adsorption of phosgene on the surface of a graphene sheet was studied. The surface of this material was modified through a metamaterial approach using heteroatoms (N and B), the addition of hydrogen atom, and functionalized with four CHO groups at edges to survey the role of defects, Hydrogen Bonding (HB), and Intramolecular Hydrogen Bonding (IHB) interactions on adsorption. Generally, there is repulsion between the π-electron cloud of the graphene sheet and electrons of electronegative atoms on pollutants. However, the addition of hydrogen atoms to the surfaces of this material leads to the formation of attractive HB interactions with pollutants such as phosgene. Also, heteroatoms have helpful effects on the adsorption process. Therefore, the adsorption of phosgene on a modified graphene sheet is better than that of pristine graphene. Results of Molecular Dynamic (MD) simulations expose that van der Waals (vdW) and HB interactions have major contributions to the adsorption of phosgene on modified graphene.

Keywords


[1] Xiang Z., Dai Q., Chen J.-F., Dai L., Edge Functionalization of Graphene and Two-Dimensional Covalent Organic Polymers for Energy Conversion and Storage, Adv. Mater., 28: 6253-6261 (2016).
[2] Bueno R.A., Martínez J.I., Luccas R.F., del Árbol N.R., Munuera C., Palacio I., Palomares F.J., Lauwaet K., Thakur S., Baranowski J.M., Strupinski W., López M.F., Mompean F., García-Hernández M., Martín-Gago J.A., Highly Selective Covalent Organic Functionalization of Epitaxial Graphene, Nat. Commun., 8: 15306 (2017).
[3] Scidà A., Haque S., Treossi E., Robinson A., Smerzi S., Ravesi S., Borini S., Palermo V., Application of Graphene-Based Flexible Antennas in Consumer Electronic Devices, Mater. Today., 21: 223-230 (2018).
[5] Li X., Zhi L., Graphene Hybridization for Energy Storage Applications, Chem. Soc. Rev., 47: 3189-3216 (2018).
[6] Zeng Y., Yang Z., Li H., Hao Y., Liu C., Zhu L., Liu J., Lu B., Li R., Multifunctional Nanographene Oxide for Targeted Gene-Mediated Thermochemotherapy of Drug-resistant Tumour, Sci. Rep., 7: 1-10 (2017).
[7] Kenry L.W.C., Loh K.P., Lim C.T., When Stem Cells Meet Graphene: Opportunities and Challenges in Regenerative Medicine, Biomaterials, 155: 236-250 (2018).
[8] Ye R., Dong J., Wang L., Mendoza-Cruz R., Li Y., An P.F., Yacamán M.J., Yakobson B.I., Chen D., Tour J.M., Manganese Deception on Graphene and Implications in Catalysis, Carbon., 132: 623-631 (2018).
[10] Ren X., Li J., Chen C., Gao Y., Chen D., Sue M., Alsaedi A., Hayat T., Graphene Analogues in the Aquatic Environment and Porous Media: Dispersion, Aggregation, Deposition and Transformation, Environ. Sci.: Nano., 5: 1298-1340 (2018).
[11] Othman N.H., Alias N.H., Shahruddin M.Z., Abu Bakar N.F., Him N.R.N., Lau W.J., Adsorption Kinetics of Methylene Blue Dyes onto Magnetic Graphene Oxide, J. Environ. Chem. Eng., 6: 2803-2811 (2018).
[12] Zhang X., Gao B., Creamer A.E., Cao C., Li Y., Adsorption of VOCs onto Engineered Carbon Materials: A Review, J. Hazard. Mater., 338: 102-123 (2017).
[13] Targholi E., Mousavi Khoshdel S.M., Rahmanifar M., Impact of Structural Defects in the Functionalized Graphene with –COOH on the Efficiency of Graphene-Based Supercapacitors, Iran. J. Chem. Chem. Eng. (IJCCE), 35: 33-42 (2016).
[15] Karimi P., Sanchooli M., Investigation of Ability of Graphene Based Nanostructures as Sodium Ion Batteries, Iran. J. Chem. Chem. Eng. (IJCCE), 38: 23-30 (2019).
[16] Alipour F. M., Mirzaagha Babazadeh; Esmail Vessally; Akram Hosseinian; Parvaneh Delir Kheirollahi Nezhad, A Computational Study on the Some Small Graphene-Like Nanostructures as the Anodes in Na−Ion Batteries, Iran. J. Chem. Chem. Eng. (IJCCE), 40: 691-703 (2021).
[17] Kyhl L., Bisson R., Balog R., Groves M.N., Kolsbjerg E.L., Cassidy A.M., Jørgensen J.H., Halkjær S., Miwa J.A., Čabo A.G., Angot T., Hofmann P., Arman M.A., Urpelainen S., Lacovig P., Bignardi L., Bluhm H., Knudsen J., Hammer B., Hornekaer L., Exciting H2 Molecules for Graphene Functionalization, ACS Nano, 12: 513-520 (2018).
[18] Petosa A.R., Jaisi D.P., Quevedo I.R., Elimelech M., Tufenkji N., Aggregation and Deposition of Engineered Nanomaterials in Aquatic Environments: Role of Physicochemical Interactions, Environ. Sci. Technol., 44: 6532-6549 (2010).
[19] Wang J., Yu S., Zhao Y., Wang X., Wen T., Yang T., Ai Y., Chen Y., Hayat T., Alsaedi A., Wang X., Experimental and Theoretical Studies of ZnO and MgO for the Rapid Coagulation of Graphene Oxide from Aqueous Solutions, Sep. Purif. Technol., 184: 88-96 (2017d).
[20] Wanjeri V.W.O., Sheppard C.J., Prinsloo A.R.E., Ngila J.C., Ndungu P.G., Isotherm and Kinetic Investigations on the Adsorption of Organophosphorus Pesticides on Graphene Oxide Based Silica Coated Magnetic Nanoparticles Functionalized with 2-Phenylethylamine, J. Environ. Chem. Eng., 6: 1333-1346 (2018).
[22] Mahmoodi N.M., Ghezelbash M., Shabanian M., Aryanasab F., Saeb M.R., Efficient Removal of Cationic Dyes from Colored Wastewaters by Dithiocarbamate-Functionalized Graphene Oxide Nanosheets: From Synthesis to Detailed Kinetics Studies, J. Taiwan Inst. Chem. Eng., 81: 239-246 (2017).
[23] Begum H., Ahmed M.S., Cho S., Jeon S., Simultaneous Reduction and Nitrogen Functionalization of Graphene Oxide Using Lemon for Metal-Free Oxygen Reduction Reaction, J. Power Sources., 372: 116-124 (2017).
[24] Ali N.S., Alismaeel Z.T., Majdi H.Sh., Salih H.G., Abdulrahman M.A., Cata Saady N.M., Albayati T.M., Modification of SBA-15 Mesoporous Silica as an Active Heterogeneous Catalyst for the Hydroisomerization and Hydrocracking of n-Heptane, Helyion, 8: e09737 (2022).
[25] Atiyah N.A., Albayati T.M., Atiya M.A., Interaction Behavior of Curcumin Encapsulated onto Functionalized SBA-15 as an Efficient Carrier and Release in Drug Delivery, J. Mol. Struc., 1260: 132879 (2022).
[26] Atiyah N.A., Albayati T.M., Atiya M.A., Functionalization of Mesoporous MCM-41 for the Delivery of Curcumin as an Anti-Inflammatory Therapy, Adv. Powder. Technol., 33: 103417 (2022).
[27] Vatandoust H., Younesi H., Mehraban Z., Heidari A., Khakpour H., Comparative Adsorption of Cd (II) and Pb (II) by MCM-48 and Amine-Grafted MCM-48 in Single and Binary Component Systems, Water Conserv. Sci. Eng.6: 67-78 (2021).
[28] Kadhum Sh.T., Alkindi Gh.Y., Albayati T.M., Determination of Chemical Oxygen Demand for Phenolic Compounds from Oil Refinery Wastewater Implementing Different Method, Desalination Water Treat., 231: 44-53 (2021).
[29] Li J., Wu Q., Wang X., Chai Z., Shi W., Hou J., Hayat T., Alsaedie A., Wang X., Heteroaggregation Behavior of Graphene Oxide on Zr-Based Metalorganic Frameworks in Aqueous Solutions: A Combined Experimental and Theoretical Study,
J. Mater. Chem. A, 5: 20398-20406 (2017).
[30] Zou Y., Wang X., Ai Y., Liu Y., Ji Y., Wang H., Hayat T., Alsaedi A., Hu W., Wang X., β-Cyclodextrin Modified Graphitic Carbon Nitride for the Removal of Pollutants from Aqueous Solution: Experimental and Theoretical Calculation Study,
J. Mater. Chem. A, 4: 14170-14179 (2016b).
[31] Vessally E., Musavi M., Poor Heravi M.R., A Density Functional Theory Study of Adsorption Ethionamide on the Surface of the Pristine, Si and Ga and Al-Doped Graphene, Iran. J. Chem. Chem. Eng (IJCCE)., 40(6): 1720-1736 (2021).
[32] Vessally E., Farajzadeh P., Najafi E., Possible Sensing Ability of Boron Nitride Nanosheet and Its Al– and Si–Doped Derivatives for Methimazole Drug by Computational Study, Iran. J. Chem. Chem. Eng., 40(4): 1001-1011 (2021).
[33] Naseri, A., Barati R., Rasoulzadeh F., Bahram M., Studies on Adsorption of Some Organic Dyes from Aqueous Solution onto Graphene Nanosheets, Iran. J. Chem. Chem. Eng. (IJCCE), 34(2): 51-60 (2015).
 [34] Lazarevic-Pasti T., Anicijevic V., Baljozovic M., Vasic Anicijevic D., Gutic S., V. Vasic V., Skorodumova N.V., Pasti I.A., The Impact of Structure of Graphene Based Materials on Removal of Organophosphorus Pesticides from Water, Environ. Sci.: Nano., 5: 1482-1494 (2018).
[35] Chinthakindi S., Purohit A., Singh V., Tak V., Goud D.R., Dubey D.K., Pardasani D., Iron Oxide Functionalized Graphene Nano-Composite for Dispersive Solid Phase Extraction of Chemical Warfare Agents from Aqueous Samples, J. Chromatogr. A, 1394: 9-17 (2015).
[37] Nakata M., Kohata K., Fukuyama T., Kuchitsu K., Molecular Structure of Phosgene as Studied by Gas Electron Diffraction and Microwave Spectroscopy. The rz Structure and Isotope Effect, J. Mol. Spect., 83: 105-117 (1980).
[38] Pohl L.R., Bhooshan B., Whittaker N.F., Krishna G., Phosgene: A Metabolite of Chloroform, Biochem. Biophys., 79: 684-691 (1977).
[39] Singh H.B., Phosgene in the Ambient Air, Nature, 264: 428-429 (1976).
[40] Gilli G., Bellucci F., Ferretti V., Bertolasi V., Evidence for Resonance-Assisted Hydrogen Bonding from Crystal-Structure Correlations on the Enol Form of the β-Diketone Fragment, J. Am. Chem. Soc., 111: 1023-1028 (1989).
[42] Grosch A.A., Van der Lubbe S.C.C., Guerra C.F., Nature of Intramolecular Resonance Assisted Hydrogen Bonding in Malonaldehyde and its Saturated Analogue, J. Phys. Chem. A, 122: 1813-1820 (2018).
[44] Rusinska-Roszak D., Intramolecular Hydrogen Bond Energy via O-H…O-C the Molecular Tailoring Approach to RAHB Structures, J. Phys. Chem. A, 119: 3674-3687 (2015).
[45] Gurbanov A.V., Kuznetsov M.L., Demukhamedova S.D., Alieva I.N., Godjaev N.M., Zubkov F.I., Mahmudov K.T., Pombeiro A.J.L., Role of Substituents on Resonance Assisted Hydrogen Bonding vs. Intermolecular Hydrogen Bonding, Cryst. Eng. Comm., 22: 628-633 (2020).
[50] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., J.A. Montgomery, Peralta Jr., J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2009).
[51] Bader R. F. W., “Atoms in Molecules: A Quantum Theory”, Oxford University Press, Oxford (1990).
[52] Schmid N., Eichenberger A.P., Choutko A., Riniker S., Winger M., Mark A.E., Van Gunsteren W.F., Definition and Testing of the GROMOS Force-Field Versions 54A7 and 54B7, Eur. Biophys. J., 40: 843-856 (2011).
[53] Stroet M., Caron B., Visscher K.M., Geerke D.P., Malde A.K., Mark A.E., Automated Topology Builder Version 3.0: Prediction of Solvation Free Enthalpies in Water and Hexane, J. Chem. Theory Comput., 14: 5834-5845 (2018).
[54] Darden T., York D., Pedersen L., Particle Mesh Ewald: An N.log (N) Method for Ewald Sums in Large Systems, J. Chem. Phys., 98: 10089-10092 (1993).
[55] Hess B., Kutzner C., Van Der Spoel D., Lindahl E., GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, J. Chem. Theory Comput., 4: 435-447 (2008).
[56] Parrinello M., Rahman A., Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method, J. Appl. Phys., 52: 7182-7190 (1981).
[57] Nosé S., A Molecular Dynamics Method for Simulations in the Canonical Ensemble, Mol. Phys., 52: 255-268 (1984).
[59] Delano W.L., PyMOL: An Open-Source Molecular Graphics Tool (2002).
[60] Khadim A.T., Albayati T.M., Cata Saady N.M., Desulfurization of Actual Diesel Fuel onto Modified Mesoporous Material Co/MCM-41, Environ. Nanotechnol. Monit. Manag., 17: 100635 (2022).