Effects of Structure and Partially Localization of the π Electron Clouds of Single-Walled Carbon Nanotubes on the Cation-π Interactions

Document Type : Research Article


Department of Chemistry, Faculty of Science, University of Zabol, P.O. Box 98615-538 Zabol, I.R. IRAN


A C102H30 graphene sheet has been rolled up to construct Single-Walled Carbon NanoTube Fragments (SWCNTFs) as parts of armchair carbon nanotubes by computational quantum chemistry methods. Non-covalent cation-π interactions of the Na+ cation on the central rings of SWCNTFs have investigated. The binding energies of the Na+-SWCNTF complexes versus true strain parameter (R) change in three brands. Structural parameters, electron charge density values, and also effects of aromaticity on the binding energies were gauged. Results show that partially localization of the π electron clouds of SWCNTFs enhances strength of the cation-π interactions in some cases. Thus, changing the π electron clouds of SWCNTs may help to improve surface modification of these materials through the cation-π interactions, which has important applications such as storage of electric energy by transportation of cations through the walls of SWCNTs and enhancement of the hydrogen adsorption compared to pure SWCNTs.  


Main Subjects

[1] Tasis D., Tagmatarchis N., Bianco A., Prato P., Chemistry of Carbon Nanotubes, J. Chem. Rev, 106: 1105–1136 (2006).
[2] Painter G.S., Ellis D.E., Electronic Band Structure and Optical Properties of Graphite from a Variational Approach, J. Phys. Rev. B, 1: 4747–4752 (1970).
[3] Blasé X., Benedict L.X., Shirley E.L., Louie S.G., Hybridization Effects and metallicity in Small Radius Carbon Nanotubes, J. Phys. Rev. Lett, 72: 1878–1881 (1994).
[4] Naseri  A., Barati R., Rasoulzadeh F.,  Bahram  M., Studies on Adsorption of Some Organic Dyes from Aqueous Solution onto Graphene Nanosheets, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 34: 51-60 (2015).
[5] Ma J., Wang J.N., Tsai C.J., Nussinov R., Buyong M.A., Diameters of Single-Walled Carbon Nanotubes (SWCNTs) and Related Nanochemistry and Nanobiology, Front. J. Mater. Sci. China, 4: 17–28 (2010).
[6] Wang Y.Y., Wang X., Wu B., Zhao Z., Yin F., Li S., Qin X., Chen Q., Dispersion of Single-Walled Carbon Nanotubes in Poly (diallyldimethylammonium chloride) for Preparation of a Glucose Biosensor, J. Sensors and Actuators B: Chemical, 130: 809-815 (2008).
[7] Bianco A., Kostarelos K., Prato M., Applications of Carbon Nanotubes in Drug Delivery, J. Current Opinion in Biotechnology, 9: 674-679 (2005).
[8] Srinivasan, C., Carbon Nanotubes in Cancer Therapy, J. Current Science, 94: 300-301 (2008).
[9] Harris P.J.F., "Carbon Nanotube Science, Synthesis, Properties and Applications", Cambridge University Press, Cambridge, (2009).
[10] Kang S., Pinault M., Pfefferle L.D., Elimelech M., Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity, J. Langmuir, 23: 8670-8673 (2007).
[11] Lin Y., Taylor S., Li H.P., Fernando K.A.S., Qu L.W., Wang W., Gu L.R., Zhou B., Sun Y. P.,  Advances Toward Bioapplications of Carbon Nanotubes,
J. Mater. Chem, 14:527-541 (2004).
[12] Star A., Liu Y., Grant K., Ridvan L., Stoddart J.F., Steuerman D.W., Diehl M.R., Boukai A., Heath J. R., Noncovalent Side-Wall Functionalization of Single-Walled CarbonNanotubes, J. Macromolecules, 36: 553-560 (2003).
[13] Lin Y., Allard L.F., Sun Y.P., Protein-Affinity of Single-Walled Carbon Nanotubes in Water, J. Phys. Chem. B, 108: 3760-3764 (2004).
[14] Huang W., Taylor S., Fu K., Lin Y., Zhang D., Hanks T.W., Rao A.M., Sun Y.P., Attaching Proteins to Carbon Nanotubes via Diimide-Activated Amidation, J. Nano Lett, 2: 311-314 (2002).
[16] Ma J.C., Dougherty D.A., The Cation-π Interaction, J. Chem. Rev, 97: 1303-1324 (1997).
[17] Lund-Katz S., Phillips M.C., Mishra V.K., Segrest J.P., Anantharamaiah G.M., Microenvironments of
Basic Amino Acids in Amphipathic .alpha.-Helixes Bound to Phospholipid: 13C NMR Studies Using Selectively Labeled Peptides
, J. Biochemistry, 34: 9219-9226 (1995).
[18] Gromiha M.M., Santhosh C., Ahmad S., Structural Analysis of Cation-pi Interactions in DNA Binding Proteins, Int. J. Biol. Macromol, 34: 203-211 (2004).
[19] Gallivan J.P., Dougherty D.A., Cation-π Interactions in "Structural Biology, Proc. Natl. Acad. Sci.", USA, 96: 9459-9464 (1999).
[20] Zhong W., Gallivan J.P., Zhang Y., Li L., Lester H.A., Dougherty D.A., From ab Initio Quantum Mechanics to Molecular Neurobiology: a Cation-pi Binding site in the Nicotinic Receptor, Proc. Natl. Acad. Sci. USA, 95: 12088-93 (1998).
[21] Beene D.L., Brandt G.S., Zhong W., Zacharias N.M., Lester H.A. Dougherty D.A., Cation−π Interactions in Ligand Recognition by Serotonergic (5-HT3A) and Nicotinic Acetylcholine Receptors:  The Anomalous Binding Properties of Nicotine, J. Biochemistry 41: 10262-10269 (2002).
[22] Xiu X., Puskar N.L., Shanata J.A.P., Lester H.A., Dougherty D.A., Nicotine Binding to Brain Receptors Requires a Strong Cation–π  Interaction, J. Nature, 458: 534-537 (2009).
[23] Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robert J., Xu C., Lee Y.H., Kim S.G., Rinzler A.G., Colbert D.T., Scuseria G., Tomanek D., Fischer J.E., Smalley R.E., Crystalline Ropes of Metallic Carbon Nanotubes, Science, 273: 483-487
[24] Lee R.S., Kim H.J., Fischer J.E., Thess A., Smalley R.E., Conductivity Enhancement in Single-Walled Carbon Nanotube Bundles Doped with K and BrJ. Nature, 388: 255-257 (1997).
[25] Rao A.M., Eklund P.C., Bandow Sh., Thess A., Smalley R.E., Evidence for Charge Transfer in Doped Carbon Nanotube Bundles from Raman Scattering, J. Nature, 388, 257-259 (1997).
[28] Fischer J.E., Carbon Nanotubes: a Nanostructured Material for Energy Storage, Chemical innovation, 30: 21-27 (2000).
[29] Dahn J.R., Zheng T., Liu Y., Xue J.S.,Mechanisms for Lithium Inretion in Carbonaceous Materials, Science, 270: 590-593 (1995).
[30] Meunier V., Roland C., Bernholc J., Ab Initio Investigations of Lithium Diffusion in Carbon Nanotube Systems, Phys. Rev. Lett, 88: 075506 (2002).
[31] Mpourampakis G., Tylianakis E., Papanikolaou D., Froudakis G., Theoretical Study of Alkaline Cations in Carbon Nanotubes., Rev. Adv. Mater. Sci, 11: 92-97 (2006).
[32] Mpourmpakis G., Tylianakis E., Papanikolaou D., Froudakis G.E., A Multi Scale Theoretical Study of Li+ Interaction with Carbon Nanotubes,J. Nanosci. Nanotechnol, 6: 3731-3735 (2006).
[33] Wang J., Li Y., Selective Band Structure Modulation of Single-Walled Carbon Nanotubes in Ionic Liquids, J. Am. Chem. Soc., 131: 5364-5365 (2009).
[34] Priyakumar U.D., Punnagai M., Mohan G.P.K., Sastry G.N., A Computational Study of Cation–π Interactions in Polycyclic Systems: Exploring the Dependence on the Curvature and Electronic Factors, Tetrahedron, 60: 3037-3043 (2004).
[35] Wang X., Li Q., Xie J., Jin Zh., Wang J., Li Y., Jiang K., Fan Sh., Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates, J. Nano Lett, 9: 3137-3141 (2009).
[36] Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, (2009).
[38] Bader R.F.W., “Atoms in Molecules: A Quantum Theory", Oxford University Press, New York, (1990).
[39] Schleyer P.V.R., Maerker C., Dransfeld A., Jiao H., Hommes N.J.R.V.E., Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe, J. Am. Chem. Soc, 118: 6317-6318 (1996).
[40] Chen Z., Wannere C.S., Corminboeuf C., Puchta R., Schleyer P.V.R., Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. J. Chem. Rev, 105: 3842-3888 (2005).
[41] Wolinski K., Hinto J.F., Pulay P., Efficient Iimplementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations, J. Am. Chem. Soc., 112, 8251-8260 (1990).
[42] HyperChem® for Windows and NT, 1996, Hypercube, Inc., Publication HC50-00-04-00 October.