Fatty Acid Composition and Mineral Contents of Pea Genotype Seeds

Document Type: Research Article


1 Department of Field Crops, Agricultural Faculty, Selcuk University, 42075 Konya, TURKEY

2 Department of Soil Science and Plant Fertilization, Faculty of Agriculture, Selcuk University, 42031 Konya, TURKEY

3 Department of Food Engineering, Faculty of Agriculture, University of Selçuk, Konya, TURKEY


Metal, non-metal and and heavy metal contents of different pea genotype seeds were determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). For all genotypes, significant differences were observed in the mineral contents. Potassium was the most abundant element, ranged from 10146.13 mg/kg (PS3048) to 13171.97 mg/kg (PS3053) (Table 1). In addition, the phosphor content of pea seeds was found between 4004.31 mg/kg (PS 30100) and 5651.27 mg/kg (PS 3057). These pea genotypes contained 1562.32 mg/kg to 2034.28 mg/kg magnesium. Zinc contetns of pea samples changed between 29.66 mg/kg (PS 3055) and 67.81 mg/kg (PS 4053 B). The oil contents of pea samples ranged from 0.84% (PS4053 B) to 3.59% (PS 3055). Oleic acid is predominant fatty acid 12.95% to 45.02% followed by palmitic 13.68% to 77.28%, stearic (1.66% to 15.99%) acids. The highest oleic acid was found in PS3048 genotype (45.02%). The highest palmitic acid was found in PS4021 pea sample (77.28%). The current study contributes to the available information concerning the composition of several pea genotypes grown in Turkey.
Fatty Acid Composition and Mineral Contents
of Pea Genotype Seeds



Main Subjects

[1] Iqtidar A., Akbar S., Khatoon S., Chemical Composition and Nutritional Evaluation of Peas Grown in NWFP (Pakistan), J. Sci. Technol., 6:114-120 (1982).

[2] Urbano G., Aranda P., Gomez-Villalva E., Nutritional Evaluation of Pea (Pisum sativum L.) Protein Diets After Mild Hydro Thermal Treatment and with and Without Added Phytase., J. Agric.Food Chem., 51: 2415-2420 (2003).

[3] Jabeen T., Iqbal P., Khalil I.A., Amino Acid and Mineral Composition of Pea Cultivars Grown in Peshawar, Pak. J. Agric. Res., 9: 2-  (1988).

[4] Ashraf M.I., Pervez M.A., Amjad M., Ahmad R., Ayub M., Qualitative and Quantitative Response of Pea (Pisum sativum L.) Cultivars to Judicious Applications of Irrigation with Phosphorus and Potassium, Pak. J. Life Soc. Sci., 9(2): 159-164 (2011).

[5] Woźniak A., Soroka M., Stępniowska A., Makarski B., Chemical Composition of Pea (Pisum sativum L.) Seeds Depending on Tillage Systems, J. Elem. Sci., 1143-1152 (2014). 

[6] Friedman M., Nutritionalvalue of Proteinsfromdifferentfoodsources, A Review. J. Agric. Food Chem., 44: 6-29 (1996).

[7] Bastianelli  D., Grosjean  F., Peyronnet  C., Duparque  M., Regnier J.M., Feeding value of pea (Pisum sativum L.) 1. Chemical Composition of Different Categories of Pea, Anim. Sci., 67: 609-619(1998).

[8] Stanek M., Zduńczyk Z., Purwin C., Stefan Florek F., Chemical Composition and Nutritive Value of Seeds of Selected Pea Varieties, Vet. Ir Zootechnik, 28(50): 71-73(2004).

[9] Ceyhan E., Harmankaya  M., Avcı M.A., Effects of Sowing Dates and Cultivars on Protein and Mineral Contents of Bean (Phaseolus vulgaris L.), Asian J. Chem. 20(7): 5601-5613 (2008).

[10] George R.A.T., Stephens R.J., Varis S., “The Effect of Mineral Nutrients on the Yield and Quality of Seeds in Tomato”, In: Seed production (Ed. Hebblethwaite P.D), pp: 561-567(1980).

[11] Savage  G.P., Deo S. The nutritional Value of Peas (Pisum sativum). A Literature Review, Nutr. Abst. Rev. (Ser. A),59: 65-88 (1989).

[12] Coxon D.T., Davies D.R., The Effect of Therandrloci on the Lipid Content of the Seed of Pisum satiyum, Theor. Appl. Genet., 64: 47-50 (1982).

[13] Mccurdy S.M., Drake S.R., Swanson B.G., Leung H.K., Powers J.R., Influence of Cultivars, Soak Solution, Blanch Method and Brine Composition on Canned Dry Pea Quality, J. Food Sci.,48: 394-399 (1983).

[14] Akcin A. “Yemeklik Tane Baklagiller”, Selcuk University Faculty of Agriculture Konya, Publication No. 8, 41-189(1988).

[15] AACC. International. “Method 46-30.01. Crude Protein - Combustion Method”. In: Approved Methods of Analysis 11th AACC International: St. Paul, MN, USA (1999).

[17] Hişil Y., “Instrumental Analysis Techniques” (Eng.Fac.Publ. 55). Ege Üniversity, Bornova -İzmir. (in Turkish), (1998).

[18] Skujins S., Hand bookfor ICP-AES (Varıan-Vista). “A Short Guıde To Vista Series ICP-AES Operation”, VarianInt. AGşZug. Version 1.0. pp 29. Switzerland (1998).

[19] Püskülcü H., Ikiz F., “Introdiction to Statistics”, Bilgehan Presss, p 333, Bornova, Izmir, Turkey (1989) [in Turkish].

[20] Harmankaya M., Özcan M.M., Karadaş S., Ceyhan E., Protein and Mineral Contents of Pea (Pisum sativum  L.) Genotypes Grownin Central Anatolian Region of Turkey, South Western J. Hort. Biol. Environ., 1(2): 159-165 (2010).

[22] Welch R.W., Griffiths D.W., Variation in the Oil Content and Fatty Acid Composition of Field Beans (Vicia faba) and Peas (Pisum spp), J. Sci. Food Agric., 35: 1282-128 (1984)

[23] Yoshida H., Tomiyama Y., Tanaka M., Mizushina Y., Characteristic profiles of Lipid Classes, Fatty Acids and Triacylglycerol Molecular Species of Peas (Pisum sativum L.), Eur. J. Lipid Sci. Technol., 109(6): 600-607 (2007).

[25] Ryan E., Galvin K., O’Connor T., Maguire A., O’Brien N., Phytosterol, Squalene, Tocopherol Content and Fatty Acid Profile of Selected Seeds, Grains, and Legumes, Plant Foods Hum. Nutr., 62(3): 85–91 (2007).

[26] Srivastava R.P, Kumar L., Dixit G.P., Nutritional Composition and Fatty Acid Profile of Important Genotypes of Field Pea (Pisum sativum ssp. Arvense), J. Food Legumes, 22(2): 115-117 (2009).

[27] Zhigacheva I., Burlakova E., Misharina T., Terenina M., Krikunova N., Generozova I., Shugaev A., Saidgarey Fattakhov S., Fatty Acid Composition and Activity of the Mitochondrial Respiratory Chain Complex I of Pea Seedlings Underwater Deficit, Biologija, 59: 241–249 (2013).

[28] Murcia M.A., Rincon F., Fatty Acid Composition of Pea (Pisum sativum L. var. Citrina) During Growth, Grasas y Aceites, 42: 444-449 (1991).

[29] Harwood J.L., Stump P.K., Fat Metabolism in Higher Plants. XI. Synthesis of Fatty Acids in the Initial Stage of Seed Germination, Plant Physiol., 46: 500-508 (1970).

[30] Worthington  R.E., Hammos R.O., Allison J.R., Varietal Differences and Seasonal Effects on Fatty Acid Composition and Stability of Oil from 82 Peanul Genotypes, J. Agric. Food Chem., 20: 727-732 (1972).

[31] Solis  M.I.V., Patel A., Orsat V., Singh J., Mark Lefsrud M. Fatty Acid profiling of the Seed Oils of Some Varieties of Field Peas (Pisum sativum) by RP-LC/ESI-MS/MS: Towards the Development of an Oil Seed Pea, Food Chem., 139: 986-993 (2013).

[32] Kukavica B., Quartaccı M.F., Veljovıc-Jovanovic S., Navarı-Izzo F. Lipid Composition of Pea (Pisum sativum L.) and Maıze (Zeamays L.) Root Plasma Membrane and Membrane-Bound Peroxidase and Superoxide Dismutase, Arch. Biol. Sci. Belgrade, 59(4): 295-302 (2007).

[34] Özcan M.M., Bagcı A., Dursun N., Gezgin S., Hamurcu M., Dumlupınar Z., Uslu N., Macro and Micro Element Contents of Several Oat (Avena sativa L.) Genotype and Variety Grains, Iran. J. Chem. Chem. Eng. (IJCCE), 36: 73-79 (2017).