Synthesis of Carbon Nanotubes on Cerium-Substituted Barium Ferrite Substrate by Chemical Vapor Deposition for Preparation of a Microwave Absorbing Nanocomposite

Document Type: Research Article

Authors

Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 15875-1774 Tehran, I.R. IRAN

Abstract

In this research, at first, Ce-substituted barium ferrite, BaCe0.2Fe11.8O19 was prepared via the sol-gel method as a substrate and then Carbon NanoTubes (CNTs) was synthesized on the surface of the substrate by Chemical Vapor Deposition (CVD) technique. The structure, morphology, and electromagnetic performance of the synthesized nanocomposites were characterized by XRD, FE-SEM, and Vibrating Sample Magnetometer (VSM), respectively. The results indicated that the BaCe0.2Fe11.8O19 particles were coated by CNTs, and the nanocomposite has magnetic properties. Therefore, the electromagnetic properties including complex permittivity (εr), the permeability (µr), and microwave absorption properties were investigated using a vector network analyzer. It was found that in the nanocomposite, because of the presence of CNTs, the Reflection Loss (RL) widely increased. The maximum reflection loss in the frequency range of 8-12 GHz for 2.5 mm thickness was -49.61 dB at 9.0 GHz. The results suggest that prepared nanocomposite can be suitable in the microwave absorbing coatings.

Keywords

Main Subjects


[1] Huo J., Wang L, YuH., Polymeric Nanocomposites for Electromagnetic Wave Absorption, J. Mater. Sci., 44: 3917-3927 (2009).

[2] Xu Y., Yan Z. Zhang D., Microwave Absorbing Property of a Hybrid Absorbent with Carbonyl Irons Coating on the Graphite, Appl. Surf. Sci., 356: 1032–1038 (2015).

[3]    Wu H., Qu S., Lin K., Qing Y., Wang L., Fan Y.,
Fu Q., Zhang F., Enhanced Low-Frequency Microwave Absorbing Property of SCFs@ TiO2 Composite, Powder Technol., 333: 153-159 (2018).

[4]    Wu H., Wu G., Wang L., Peculiar Porous α-Fe2O3, γ-Fe2O3 and Fe3O4 Nanospheres: Facile synthesis and Electromagnetic Properties, Powder Technol.,  269: 443–451 (2015).

[5] Qing Y., Zhou W., Luo F., Zhu D., Microwave Absorbing and Mechanical Properties of Carbonyl Iron/Epoxy-Silicone Coating, J. Magn. Magn. Mater., 321: 25-28 (2009).

[6] Wu G., Cheng Y., Ren Y., Wang Y., Wang Zh., Wu H., Synthesis and Characterization of γ-Fe2O3@C Nanorod-Carbon Sphere Composite and its Application as Microwave Absorbing Material, J. Alloy Compd., 652: 346-350 (2015).

[7] Wu H., Wu G., Ren Y., Yang L., Wang L., Li X., Co2+/Co3+ Ratio Dependence of Electromagnetic Wave Absorption in Hierarchical NiCo2O4-CoNiO2 Hybrids, J. Mater. Chem. C, 3: 7677–7690 (2015).

[8] Liu J.W., Che R.C., Chen H.J., Zhang F., Xia F., Wu Q.S., Wang M., Microwave Absorption Enhancement of Multifunctional Composite Microspheres with Spinel Fe3O4 Cores and Anatase TiO2 Shells, Small, 8:1214–1221 (2012).

[9] Zhou M., Zhang X., Wei J.M., Zhao S.L., Wang L., Feng B.X., Morphology-Controlled Synthesis and Novel Microwave Absorption Properties of Hollow Urchin Like a-MnO2 Nanostructures, J. Phys. Chem. C, 115: 1398–140 (2011).

[10] Zhang T., Huang D., Yang Y., Kang F., Gu J., Fe3O4/Carbon Composite Nanofiber Absorber with Enhanced Microwave Absorption Performance, Mater. Sci. Eng. B, 178: 1–9 (2013).

[11] Ren Y.L., Zhu C.L., Qi L.H., Gao H., Chen Y.J., Growth of G-Fe2O3 Nanosheet Arrays  on Graphene for Electromagnetic Absorption Applications, RSC Adv., 4: 21510-21516 (2014).

[12] Zhou H., Wang J., Zhuanga J., Liu Q., A Covalent Route for Efficient Surface Modification of Ordered Mesoporous Carbon as High Performance Microwave Absorbers, Nanoscale, 5: 12502-12511 (2013).

[13] Zhang P., Han X., Kang L., Qiang R., Liu W., Du Y., Synthesis and Characterization of Polyaniline Nanoparticles with Enhanced Microwave Absorption, RSC Adv., 3: 12694-12701 (2013).

[14] Adohi B.J.P., Mdarhri A., Prunier C., Haidar B., Brosseau C., A Comparison Between Physical Properties of Carbon Black-Polymer and Carbon Nanotubes polymer Composites, J. Appl. Phys., 108: 074108 (2010).

[16] Alaei M., Simple Method for the Preparation of Fe3O4/MWCNT Nanohybrid as Radar Absorbing material (RAM), Iran. J. Chem. Chem. Eng., In Press (2018).

[17] Sugimoto S., Kondo S., Okayama K., Book D., Kagotani, T., Homma, M., M-Type Ferrite Composite as a Microwave Absorber with Wide Bandwidth in the GHz Range, IEEE Trans. Magn., 35: 3154–3156 (1999).

[19] Lisjak D., Bobzin K. Richardt K., Begard M., Bolelli G., Lusvarghi L., Hujanen A., Lintunen P., Pasquale M., Olivetti E., Drofenik M. Schlafer T., Preparation of Barium Hexaferrite Coatings Using at Mospheric Plasma Spraying, J. Eur. Ceram. Soc., 29: 2333–2341 (2009).

[20] Pardavi-Horvath M., Microwave Applications of Soft Ferrites, J. Magn. Magn. Mater., 215–216: 171–183 (2000).

[21] Gairola S.P., Verma V., Singh A., Purohit L.P., Kotnala R.K., Modified Composition of Barium Ferrite to Act as a Microwave Absorber in X-Band Frequencies, Solid State Commun., 150: 147–151 (2010).

[22] Liu Y., Drew M.G.B., Wang,J., Zhang M. Liu Y., Efficiency and Purity Control in the Preparation of Pure and/or Aluminum-Doped Barium Ferrites by Hydro-Thermal Methods Using Ferrous Ions as Reactants, J. Magn. Magn. Mater., 322: 366–374 (2010).

[23] Ahmed M.A., Okasha N. Kershi R.M., Influence of Rare-Earth Ions on the Structure and Magnetic Properties of Barium W-Type Hexaferrite, J. Magn. Magn. Mater., 320: 1146–1150 (2008).

[24] Gu Y.Y., Tan X.P., Liang S.Q., Sang S.B., Effects of La3+ Doping on MnZn Ferrite Nanoscale Particles Synthesized by Hydrothermal Method, J. Cent. South. Univ. Technol., 11:166-168 (2004).

[25] Mosleh Z., Kameli P., Poorbaferani A., Ranjbar M., Salamati H., Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite,  J. Magn. Magn. Mater., 397: 101-107 (2016).

[26] Chang S., Kangning S. Pengfei, C., Microwave Absorption Properties of Ce-Substituted M-Type Barium Ferrite, J. Magn. Magn. Mater., 324: 802–805 (2012).

[27] Che R.C., Peng L.M., Duan X.F., Chen Q., Liang X.L., Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated Within Carbon Nanotubes, Adv. Mater., 16: 401-405 (2004).

[28] Lin H., Zhu H., Guo H., Yu L., Investigation of the Microwave-Absorbing Properties of Fe-Filled Carbon Nanotubes, Mater. Lett., 61: 3547–3550 (2007).

[30] Hekmatara H., Seifi M., Forooraghi K., Microwave absorption property of aligned MWCNT/Fe3O4, J. Magn. Magn. Mater., 346: 186-191 (2013).

[31] Shakirzianov F.N., Han B., Kiaisec A.A., Cheparin V.P., The Effect of Nanotubes on Electromagnetic Waves Absorption in Composite Radio Absorbing Materials on the Basis of Hexagonal Ferrites, Proc. 9th Int. Conf. Prop. Appl. Dielectric Mater.,1211–1214 ( 2009).

[32] He K., Yu L., Sheng L., An K., Ando Y., Zhao X., Doping Effect of Single-Wall Carbon Nanotubes on The Microwave Absorption Properties of Nanocrystalline Barium Ferrite, J. J. Appl. Phys., 49: 125101-125105 (2010).

[33] Zhao D.X., Li Q.L., Ye Y., Zhang C.R., Synthesis and Characterization of Carbon Nanotubes Decorated with Strontium Ferrite Nanoparticles, Synth. Met., 160: 866-870 (2010).

[34] Ghasemi A., Shirsath S.E., Liu X., Morisako A., Enhanced Reflection Loss Characteristics of Substituted Barium Ferrite/Functionalized Multi-Walled Carbon Nanotube Nanocomposites, J. Appl. Phys., 109: 07A507 (2011).

[35] Ghasemi A., Javadpour S., Liu X., Morisako A., Magnetic and Reflection Loss Characteristics of Substituted Barium Ferrite/Functionalized Multiwalled Carbon Nanotube, IEEE Trans. Magn., 47: 4310-4313 (2011).

[36] Yu Y., Qu S., Zang D., Wang L., Wu H., Fast Synthesis of Pt Nanocrystals and Pt/Microporous La2O3 Materials Using Acoustic Levitation, Nanoscale Res. Lett., 13:  50 (2018).

[37] Qu S., Yu Y., Lin K., Liu P., Zheng C., Wang L., Xu T., Wang Zh., Wu H., Easy hydrothermal synthesis of multi-shelled La2O3 hollow spheres for lithium-ion, J Mater Sci: Mater Electron., 29: 1232-1237 (2018).

[38] Koziol K., Boskovic B.O., Yahya N., Synthesis of Carbon Nanostructures by CVD, Carbon and Oxide Nanostructures, Adv. Struct. Mater., 5: 23–49 (2010).

[39] Bahrami B., Khodadadi A., Mortazavi Y. Esmaieli M., Short Time Synthesis of High Quality Carbon Nanotubes with High Rates by CVD Of Methane on Continuously Emerged Iron Nanoparticles, Appl. Surf. Sci., 257: 9710–9716 (2011).

[40] Oliveira H.A., Franceschini D.F., Passos F.B., Support Effect on Carbon Nanotube Growth by Methane Chemical Vapor Deposition on Cobalt Catalysts, J. Braz. Chem. Soc., 23: 868-879 (2012).

[41] Rashidi A., Mortazavi Y., Khodadadi A., The Preparation of Bamboo-Structured Carbon Nanotubes with the Controlled Porosity by CVD of Acetylene on Co-Mo/MCM-41, Iran. J. Chem. Chem. Eng., 25: 9-13 (2006).

[42] Zhou W., Han Z., Wang J., Zhang Y., Jin Z., Sun Z., Zhang Y., Yan C., Li Y., Copper Catalyzing Growth of Single-Walled Carbon Nanotubes on Substrates, Nano Lett., 6: 2987-2990 (2006).

[43] Uchino T., Bourdakos K.N., Ashburn C.H.deGroot P., Kiziroglou M.E., Dilliway G., Smith D.C., Metal Catalyst-Free Low-Temperature Carbon Nanotube Growth on SiGe Islands, Appl. Phys. Lett., 86: 233110 (2005).

[46] Li Y., Huang Y., Qi S., Niu L., Zhang Y. Wu Y., Preparation, Magnetic and Electromagnetic Properties of Polyaniline/Strontium Ferrite/Multiwalled Carbon Nanotubes Composite, Appl. Surf. Sci., 258: 3659-3666 (2012).

[47] Ramo S., Whinnery J.R., Van Duzer T., “Fields and Waves in Communication Electronics”, 3rd Ed., Wiley, New Jersey, USA (1994).

[48] Naito Y., Suetake K., Application of Ferrite to Electromagnetic Wave Absorber and Its Characteristics, IEEE Trans. Microw. Theory. Tech., 19: 65–72 (1971).

[49] Liu K.H., Li D.R., Liu T.C., Zhang L., Lu Z.C., Zhou, S.X., Effect of Fe-Based Amorphous Flakes Distribution on Electromagnetic Properties of Microwave Absorbers, Metallic Funct. Mater., 17: 1–4 (2010).

[50] Ghasemi A., Hossienpour A., Morisako A., Saatchi A., Salehi M., Electromagnetic Properties and Microwave Absorbing Characteristics of Doped Barium Hexaferrite, J. Magn. Magn. Mater., 302: 429–435 (2006).