The Preparation of Bamboo-Structured Carbon Nanotubes with the Controlled Porosity by CVD of Acetylene on Co-Mo/MCM-41

Document Type: Research Article


1 Catalyst and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O.Box 11365-4563 Tehran, I.R. IRAN

2 Carbon Research Center, Research Institute of Petroleum Industry (RIPI), P.O.Box 18745-4163 Tehran, I.R. IRAN


Bamboo-structured carbon nanotubes are grown on Co-Mo/MCM-41 catalyst in the temperature range of 873-973 K by thermal chemical vapor deposition of acetylene. This study shows that the purified carbon nanotubes have open tips and the metals of the catalyst are not encapsulated. Thus, the bamboo-structure seems to grow from the base. Pore size distribution of the product is quite narrow and is in the range of 2- 5 nm similar to the catalyst pore size distribution.  The results of this study demonstrate that by manipulating the template, the pore size distribution of the final product may be controlled. The so-prepared carbon nanotubes with controlled porosity are better suited for the application in gas adsorption and catalyst synthesis.


Main Subjects

[1] Iijima, S., Nature, 56, 354 (1991).
[2] Subramoney, S., Interface, 34, 8 (1999).
[3] Chen, P., Wu, X., Lin, J. and Tan, K.L., Science, 285, 91(1999).
[4] Dai, H., Rinzer, A., Nikolaev, P., Theses, A., Colbert, D.T. and Smalley, R.E., Chem. Phys. Lett., 471, 260 (1999).
[5] Iijima, S. and Ichihashi, T., Nature, 603, 363 (1993).
[6] Kong, J., Cassell, A.M., and Dai, H., Chem. Phys. Lett., 4, 292 (1998).
[7] Nikolaev, T., Guo, P., Thess, A., Colbert, D.T., and Smalley, R.E., Chem. Phys. Lett., 49, 243 (1995).
[8] Colomer, J.F., Stephan, C., Lefrant, S., Tendeloo, G.V., Willems, I., Konya, Z., Fonseca, A., Laurent, Ch., and Nagy, J.B., Chem. Phys. Lett., 83, 317 (2000).
[9] Saito, Y., and Yoshikawa, T., J. Cryst. Growth, 154, 134 (1993).
[10] Kovalevski, V.V. and Safronov, A.N., Carbon, 96, 336 (1998).
[11] Kiselev, N.A., Slaoan, J., Zakharov, D.N., Kukovitskii, E.F., Hutchison, J.L., Hammer, J., Kotosonov, A.S., Carbon, 36, 1149 (1998).
[12] Li, Y.D., Chen, J.L, Ma, Y.M., Zhao, J.B., Qin, and Chang, N., L., Chem. Commun, 12, 1141, (1999).
[13] Li, D.C., Dai, L.M., Huang, S.M., Mau, A.W.H. and Wang, Z.L., Chem. Phys. Lett., 349, 316 (2000).
[14] Wang, N., Tang, Z.K., Li, G.D. and Chen, J.S., Nature, 50, 408 (2000).
[15] Urban, M., Mehn, D., Konya,  Z.  and  Kiricsi, I., Chem. Phys. Lett., 95, 359 (2002).
[16] Liu, B. C., Gao, L. Z., Liang, Q., Tang, S.H., Qu, M.Z. and Yu, Z.L., Catalyst Letters, 225, 71 (2001).
[17] Lee, C.J. and Park, J., J. Phys. Chem., B, 105, 365 (2001).