Computational Evaluation of Corrosion Inhibition of Four Quinoline Derivatives on Carbon Steel in Aqueous Phase

Document Type: Research Article


1 Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, I.R. IRAN

2 Young Researchers and Elite Club, Bushehr Branch, Islamic Azad University, Bushehr, I.R. IRAN


Molecular Dynamics (MD) simulation and Density Functional Theory (DFT) methods have been used to evaluate the efficiency of four quinoline derivatives on corrosion inhibition in the aqueous phase. Some quantum chemical parameters such as hardness (η), electrophilicity (w), polarizability (a), energy of the highest occupied molecular orbital (EHOMO), energy of the lowest unoccupied molecular orbital (ELUMO), electronegativity (c), total amount of electronic charge transferred (ΔN), Total Negative Charges (TNC) on the whole of the molecule, Molecular Volume (MV), surface area and Fukui index were calculated. Molecular dynamics simulation showed a view of the dynamic evolution of the interaction energy between surface of metal and inhibitors. Results of two methods showed QUIN4 inhibitor has higher negative interactions and efficiency as compared to the other inhibitors, which was consistent with the experimental report.


Main Subjects

[1] Swiler T.P., Loehman R.E., Molecular Dynamics Simulations of Reactive Wetting in Metal–Ceramic Systems, Acta Materialia, 48: 4419-4424 (2000).

[2] Kornherr A., French S.A., Sokol A.A., Catlow C.R.A., Hansal S., Hansal W.E.G., Besenhard J.O., Kronberger H., Nauer G.E., Zifferer G., Interaction of Adsorbed Organosilanes with Polar Zinc Oxide Surfaces: a Molecular Dynamics Study Comparing Two Models for the Metal Oxide Surface, Chem. Phys. Lett., 393: 107-111 (2004).

[3] Shahraki M., Dehdab M., Elmi Sh., Theoretical Studies on the Corrosion Inhibition Performance of Three Amine Derivatives on Carbon Steel: Molecular Dynamics Simulation and Density Functional Theory Approaches, J. Taiwan Inst. Chem. Eng., 62: 313–321 (2016).

[4] Dehdab M., Shahraki M., Habibi-Khorassani S.M., Theoretical Study of Inhibition Efficiencies of Some Amino Acids on Corrosion of Carbon Steel in Acidic Media: Green Corrosion Inhibitors, Amino Acides, 48(1): 291–306 (2015).

[5] Dehdab M., Shahraki M., Habibi-Khorassani S.M., Inhibitory Effect of Some Benzothiazole Derivatives on Corrosion of Mild Steel: A Computational Study, Iran. J. Sci. Technol., 39A(3): 311-324 (2015).

[6] Masoud M.S., Awad M.K., Shaker M.A., El-Tahawy M.M.T., The Role of Structural Chemistry in the Inhibitive Performance of some Aminopyrimidines on the Corrosion of Steel, Corrosion Science, 52: 2387-2396 (2010).

[7] Becke A. D., Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior, Phys. Rev. A, 38:3098-3100 (1988).

[8] Becke A.D., Density‐Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 98:5648-5652 (1993).

[9] M.J.T. Frisch G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery Jr. J.A., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E.; Hratchian H.P., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C. Y., Nanayakkara A.,      Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A., Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford CT), (2004).

[13] Parr R.G., Szentpály L.V., Liu S., Electrophilicity Index, J Am. Chem. Soc., 121:1922-1924 (1999).

[14] Maynard A.T., Huang M., Rice W.G., Covell D.G., Reactivity of the HIV-1 Nucleocapsid Protein p7 Zinc Finger Domains from the Perspective of Density-Functional Theory, Proceedings of the National Academy of Sciences of the United States of America, 95:11578-11583 (1998).

[19] Ghanty T.K., Ghosh S.K., Correlation between Hardness, Polarizability, and Size of Atoms, Molecules, and Clusters, J. Phys. Chem., 97:4951-4953 (1993).

[20] Materials Studio 6.1 Manual. San Diego, CA: Accelrys, Inc; (2007).

[21] Satoh S., Fujimoto H., Kobayashi H., Theoretical Study of NH3 Adsorption on Fe(110) and Fe(111) Surfaces, J. Phys. Chem. B, 110:4846-4852 (2006).

[22] Fukui K., The Role of Frontier Orbitals in Chemical-Reactions, Angew. Chem. Int. Ed., 21:801-809 (1982).

[23] Ebenso E.E., Arslan T., Kandemirli F., Caner N., Love I., Quantum Chemical Studies of some Rhodanine Azosulpha Drugs as Corrosion Inhibitors for Mild Steel in Acidic Medium, Int. J. Quantum Chem, 110:1003-1018 (2010).

[24] Parr R.G., Yang W., “Density Functional Theory of Atoms and Molecules”, Oxford University Press, Oxford (1989).

[25] Pearson R.G., Hard and Soft Acids and Bases, HSAB, Part 1: Fundamental Principles, Journal of Chemical Education, 45:581-585 (1968).

[26] Habibi-Khorassani S.M., Shahraki M., Noroozifar M., Darijani M., Dehdab M., Yavari Z., Inhibition of aluminum corrosion in acid solution by environmentally friendly antibacterial corrosion inhibitors: Experimental and theoretical investigations, Prot. Met. Phys. Chem, 53(3):579-590 (2017).

[27] Yadav M., Kumar S., Bahadur I., Ramjugernath D., Corrosion Inhibitive Effect of Synthesized Thiourea Derivatives on Mild Steel in a 15% HCl Solution, Int. J. Electrochem. Sci., 9:6529 – 6550 (2014).

[28] Lukovits I., Kalman E., Zucchi F., DFT Calculations for Corrosion Inhibition of Ferrous Alloys by Pyrazolopyrimidine Derivatives, Corrosion, 57:3-8 (2001).

[30] Shahraki M., Habibi-Khorassani S. M., Noroozifar M., Yavari Z., Darijani M. Dehdab M., Corrosion Inhibition of Copper in Acid Medium by Drugs: Experimental and Theoretical Approaches, Iranian Journal of Materials Science and Engineering., 14:35-47 (2017).

[31] Nataraja S.E., Venkatesha T.V., Tandon H.C., Computational and Experimental Evaluation of 

the Acid Corrosion Inhibition of Steel by Tacrine, Corrosion Science, 60:214-223 (2012).

[32] Karima A., Sihem A., Jean-Pierre M., Inhibition of Copper Corrosion by Ethanolamine in 100 ppm NaCl, Iran. J. Chem. Chem. Eng. (IJCCE), 35(4): 89-98 (2016).

[33] Xia S., Qiu M., Yu L., Liu F., Zhao H., Molecular Dynamics and Density Functional Theory Study
on Relationship between Structure of Imidazoline Derivatives and Inhibition Performance
, Corrosion Science, 50:2021-2029 (2008).

[34] Tang Y., Yao L., Kong C., Yang W., Chen Y., Interfacial Reactions between Molten Al and
a Co–Cr–Mo Alloy with and Without Oxidation Treatment
, Corrosion Science., 53:2046-2049 (2011).

[35] Feng L., Yang H., Wang F., Experimental and Theoretical Studies for Corrosion Inhibition of Carbon Steel by Imidazoline Derivative in 5% NaCl Saturated Ca(OH)2 Solution, Electrochimica Acta., 58:427-436 (2011).

[36] Khaled K.F., Evaluation of Electrochemical Frequency Modulation as a New Technique for Monitoring Corrosion and Corrosion Inhibition of Carbon Steel in Perchloric Acid Using Hydrazine Carbodithioic Acid Derivatives, J. Appl. Electrochem., 41:423-433 (2011).

[37] Zeng J., Zhang J., Gong X., Molecular Dynamics Simulation of Interaction between Benzotriazoles and Cuprous Oxide Crystal, Comput. Theor. Chem., 963:110-114 (2011).