Bis-DCM Type Dyes: Convenient Method for Synthesis of 2-(2, 6-bis(4-(dialkylamino)styryl)-4H -pyran-4-ylidene) Malononitrile Derivatives

Document Type: Research Article

Authors

Organic Synthesis Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, I.R. IRAN

Abstract

An efficient and convenient method for synthesis of 2,6-bis (4-(dialkylamino) styryl)-4H-pyran-4-one starting from 4- (dialkylamino) benzaldehyde with 2,6-dimethyl-4H-pyran-4-onein the presence of MeONa as the base was described. Additionally, preparation of novel compounds with bis-DCM-type skeleton for application in organic light-emitting diodes was developed via reaction of malononitrile as active methylene group with 2,6-bis (4-(dialkylamino) styryl) -4H-pyran-4-one derivatives. 1H and 13C NMR, FT-IR spectroscopy supported the predicted structure of the products. The UV-Vis absorption spectra of synthesis compound were measured in diluted dichloromethane solution. Maximum absorption (lmax) values differ from 460 to 496 nm, this absorption is due to π-π* transition.

Keywords

Main Subjects


[1] Hung L.S., Chen C.H., Recent Progress of Molecular Organic Electroluminescent Materials and Devices, Mater. Sci. Eng:R., 39 (5-6): 143-222 (2002).

[2] Strohriegel P., Grazulevicius J.V., Charge-Transporting Molecular Glasses, Adv. Mater., 14(20): 1439-1452 (2002).

[3] Bassani D.M., Jonusauskaite L., Lavie-Cambot A., McClenaghan N.D., Pozzo J.L., Ray D., G,Vives, Coord. Harnessing Supramolecular Interactions
in Organic Solid-State Devices: Current Status and Future Potential,
Chem. Rev., 254(19-20): 2429-2445 (2010).

[5] Sandstrom J., Wenoerbeck I., Studies of Polarised Ethylenes, Acta Chem. Scand., 24(4): 1191-1201 (1970).

[6] Sandstrom J., Sterechemistry, Top. Stereochem., 14: 83-84 (1983).

[7] LeCours S.M., Guan H.W., DiMagno S.G., Wang C.H., Therien M.J., Push−Pull Arylethynyl Porphyrins:  New Chromophores That Exhibit Large Molecular First-Order Hyperpolarizabilities, J. Am. Chem. Soc., 118(6): 1497-1503 (1996).

[8] Marder S.R., Gorman C.B., Meyers F., Perry J.W., Bourhill G., Bredas J.L., Pierce B.M., A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes, Science., 265(5172): 632-635 (1994). 

[9] Verbiest T., Houbrechts S., Kauranen M., Clays K., Persoons A., Second-Order Nonlinear Optical Materials: Recent Advances in Chromophore Design, J. Mater. Chem., 7(11): 2175-2189 (1997).

[10] Markovic R., Dzambaski Z., Baranac M., Stereo- and Regiocontrol of Electrophile-Initiated Rearrangement of Push–Pull 5-Substituted 4-Oxothiazolidine Derivatives, Tetrahedron., 57(27): 5833-5841 (2001).

[11] Jayamurugan G., Dumele O., Gisselbrecht J.P., Boudon C., Schweizer W.B., Bernet B., Diederich F., Expanding the Chemical Structure Space of Opto-Electronic Molecular Materials: Unprecedented Push–Pull Chromophores by Reaction of a Donor-Substituted Tetracyanofulvene with Electron-Rich Alkynes, J. Am. Chem. Soc., 135(9): 3599-3606 (2013).

[12] Chen Z., E.Burrows P., Bulovic V., Forrest S.R., Thompson M.E., Three-Color, Tunable, Organic Light-Emitting Devices, Science., 276(5321): 2009-2011 (1997).

[13] Kwong R.C., Lamansky S., Thompson M.E., Organic Light-emitting Devices Based on Phosphorescent Hosts and Dyes, Adv. Mater., 12(15): 1134-1138 (2000).

[14] Shirota Y., Kuwabara Y., Okuda D., Okuda R., Ogawa H., Inada H., Wakimoto T., Nakada H., Yonemoto S., Kawami Y., Starburst Molecules Based on π-Electron Systems as Materials for Organic Electroluminescent Devices, J. Lumin., 72-74: 985-991 (1997).

[15] Yang L., Guan M., Nie D., Lou B., Liu Z., Bian Z., Bian J., Huang C., Efficient, Saturated red Electroluminescent Devices with Modified Pyran-Containing Emitters, Opt. Mater., 29(12): 1672-1679 (2007).

[16] Kwak G., Wang S., Choi M.S., Kim H., Choi K.H., Han Y.S., Hur Y., Kim S.H., 2D–π–A Type Pyran-Based Dye Derivatives: Photophysical Properties Related to Intramolecular Charge Transfer and Their Electroluminescence Application, Dyes Pigments., 78(1): 25-33 (2008).

[17] Yao Y.S., Xiao J., Wang X.S., Deng Z.B., Zhang B.W., Starburst DCM-Type Red-Light-Emitting Materials for Electroluminescence Applications, Adv. Funct. Mater., 16(5): 709-718 (2006).

[18] Ma C.Q., Liang Z., Wang X.S., Zhang B.W., Cao Y., Wang L.D., Qiu Y., A Novel Family of Red Fluorescent Materials for Organic Light-Emitting Diodes, Synth. Met., 138(3): 537-542 (2003).

[19] Chen C.H., Tang C.W., Shi J., Klubek K.P., Recent Developments in the Synthesis of Red Dopants for Alq3 Hosted Electroluminescence, Thin Solid Films., 363(1-2): 327-331 (2000).

[20] Chang Y.J., Chow T.J., Highly Efficient red Fluorescent Dyes for Organic Light-Emitting Diodes, J. Mater. Chem., 21(1): 3091-3099(2011).

[21] Wang S., Kim S.H., New Solvatochromic Merocyanine Dyes Based on Barbituric Acid and Meldrum's Acid, Dyes Pigments., 80(3): 314-320 (2009).

[22] Kim D.U., Paik S.H., Kim S.H., Tak Y.H., Han Y.S., Kim S.D., Kim K.B., Ju H.J., Kim T., Electro-Optical Characteristics of Indandione-Pyran Derivatives as Red Emission Dopants in Electroluminescent Device, J, Mater. Sci. Eng.C., 24(1-2): 147-149 (2004).

[23] Jianzhong C., Suh H.J., Kim S.H., Synthesis and Properties of Conjugated Copolymers with 2-Pyran-4-Ylidene Malononitrile, Dyes Pigments., 68(1): 75-77 (2006).

[24] Hwang D.H., Lee J.D., Lee M.J., Lee C., Organic Light-Emitting Diode Using a New DCM Derivative as an Efficient Orange–Red Doping Molecule, Curr. Appl. Phys., 5(3): 244-248 (2005).

[25] Andreu R., Carrasquer L., Garin J., Modrego M.J., Orduna J., Alicante R., Vilcampa B., Allian M., New One- and Two-Dimensional 4H-Pyranylidene NLO-Phores, Tetrahedron Lett., 50(24): 2920-2924 (2009).

[26] Andreu R., Franco S., Galįn E., Garin J., De Baroja M.N., Momblona C., Orduna J., Alicante R., Villacampa B., Isophorone- and Pyran-Containing NLO-Chromophores: A Comparative Study, Tetrahedron Lett., 51(28): 3662-3665 (2010).

[28] Do D.Y., Park S.K., Ju J.J., Park S., Lee M.H., Nonlinear Optical Polyimides with Various Substituents on Chromophores: Synthesis and Glass Transition Temperature, Opt. Mater., 26(3): 223-229(2004).

[29] Kim P.J., Kwon O.P., Jazbinsek M., Yun H., Gunter P., The Influence of Pyrrole Linked to the π-conjugated Polyene on Crystal Characteristics and Polymorphism, Dyes Pigments., 86(2): 149-154(2010).

[30] Chen P.Y., Herng Y.U., Yokoyama M., New Double Graded Structure for Enhanced Performance in White Organic Light Emitting Diode, J. Lumin., 130(10): 1764-1767 (2010)

[31] Zhang X.H., Chen B.J., Lin X.Q., Wong O.Y., Lee C.S., Kwong H.L., Lee S.T., Wuu S.K., A New Family of Red Dopants Based on Chromene-Containing Compounds for Organic Electroluminescent Devices, Chem. Mater., 13(5): 1565-1569 (2001).

[32] Jung K.Y., Kim Y.S., Theoretical Studies of DCM Derivatives with Dual Electron Donating Group, Mol. Cryst. Liq. Cryst., 538(1): 45-52 (2011)

[33] Guo Z., Zhu W., Tian H., Dicyanomethylene-4H-Pyran Chromophores for OLED Emitters, Logic Gates and Optical Chemosensors, Chem. Commun., 48: 6073-6084 (2012)

[34] Jung B.J., Lee J.I., Chu H.Y., Do L.M., Lee J., Shim H.K., A New Family of Bis-DCM Based Dopants for Red OLEDs, J. Mater. Chem., 15: 2470-     (2005).

[35] Jung B.J., Yoon C.B., Shim H.K., Do L.M., Zyung T., Pure-Red Dye for Organic Electroluminescent Devices: Bis-Condensed DCM Derivatives, Adv. Funct. Mater., 11(6): 430-434(2001).

[36] Gan J.A., Song Q.L., Hou X.Y., Chen K., Tian H., 1,8-Naphthalimides for Non-Doping OLEDs: The Tunable Emission Color from Blue, Green to Red, Photochem J.. Photobiol., A: Chemistry., 162(2-3): 399-406 (2004).