Bis-DCM Type Dyes: Convenient Method for Synthesis of 2-(2, 6-bis(4-(dialkylamino)styryl)-4H -pyran-4-ylidene) Malononitrile Derivatives

Teimuri-Mofrad, Reza*; Boroomand, Negar; Rahimpour, Keshvar; Hadi, Raha; Poursadegh, Ahmad
Organic Synthesis Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, I.R. IRAN

ABSTRACT: An efficient and convenient method for synthesis of 2,6-bis(4-(dialkylamino) styryl)-4H-pyran-4-one starting from 4-(dialkylamino) benzaldehyde with 2,6-dimethyl-4H-pyran-4-one in the presence of MeONa as the base was described. Additionally, preparation of novel compounds with bis-DCM-type skeleton for application in organic light-emitting diodes was developed via reaction of malononitrile as active methylene group with 2,6-bis(4-(dialkylamino) styryl) -4H-pyran-4-one derivatives. ¹H and ¹³C NMR, FT-IR spectroscopy supported the predicted structure of the products. The UV-Vis absorption spectra of synthesis compound were measured in diluted dichloromethane solution. Maximum absorption (λmax) values differ from 460 to 496 nm, this absorption is due to π-π* transition.

KEYWORDS: Knoevenagel condensation; Bis-DCM; Malononitrile; 2,6-bis(4-(dialkylamino) styryl)-4H-pyran-4-one.

INTRODUCTION
Organic compounds with low molecular mass properties of internal load transfer are widely photonics adopted for organic materials such as the creation of molecular electronics elements, solar cells, and magnets (organic light emitting diodes OLEDs) for full display panels [1-4]. A considerable and large amount of attention research efforts have been devoted over the four decades to the preparation of polarized olefinic systems [5-8]. These materials contain push-pull chromophores, characterized by electron-donating and electron-accepting moieties linked through a conjugated π-system [9-11]. Among the primary color emitters of Red, Green, and Blue (RGB) required for full-color displays, red fluorescent emitters are necessary to improve their electroluminescent properties [12,13]. One of the light-emitting materials most widely used red contains pyranylidene (4H-pyran-4-ylidene) or isophorone (5, 5-dimethylcyclohex-2-enylidene) backbone fragments of the molecule, which is conjugated in a system with electron acceptor and electron donor fragments [14-31]. Among the luminescent materials applied in red emitters, bis-DCM type dyes are the most efficient materials.

* To whom correspondence should be addressed.
+ E-mail: teymouri@tabrizu.ac.ir
1021-9986/2018/5/39-45/7/8/5.07
4-(Dicyanomethylene)-2-methyl-6-[p-(dialkylamino)styryl]-4H-pyrano[3,2-c]-pyran (bis-DCM) derivatives have attracted considerable interest due to their excellent electronic and optical properties, can be used to improve the luminance efficiency, and color purity [32-35]. Bis-DCM also has more red-shifted emission than the mono-substituted DCM derivatives [36].

Herein, we describe the design and synthesis of 2,6-bis(4-(dialkylamino)styryl)-4H-pyrano[3,2-c]-pyran-4-one 3 via an efficient and convenient new method from 4- (dialkylamino) benzaldehyde with 2,6- dimethyl-4H-pyrano[3,2-c]-pyran-4-one in the presence of MeONa. In continuous column chromatography was performed by filtration and washed with cold MeOH, then recrystallized MeOH to give 3.

EXPERIMENTAL SECTION

Material

Chemicals were either prepared in our laboratory or purchased from Merck, Fluka, Sigma, Aldrich and Yantai Suny Chem. International Co., Ltd. Commercial solid reagents were used without further purification. Liquid reagents were used without further purification. Liquid solvents were used without further purification. Liquid solvents were used without further purification.

Instrumentation

The 1H NMR and 13C NMR spectra were recorded using a Bruker FT-400 MHz spectrometer at room temperature. The FT-IR spectra were recorded on a Bruker-Tensor 270 spectrophotometer as KBr disks or smears between salt plates. Operating at 70 eV. Elemental analyses were carried out with an Elementor Vario EL III instrument. The electronic absorption spectra were obtained using SPECORD 250 analytik jena UV/Vis spectrophotometer.

General procedure for the synthesis of 2, 6-Bis-[2-(4-dialkylaminophenyl) vinyl]-4H-Pyrano[3,2-c]-pyran-4-one (3)

To a magnetically stirred solution of 4-(dialkylamino) benzaldehyde 1 (6.7 mmol) and 2, 6-dimethyl-4H-pyrano[3,2-c]-pyran-4-one 2 (3.35 mmol) in 8 mL of dry MeOH, NaOMe (6.7 mmol) was added under gentle stirring and allowed to react for 24 h at room temperature. The obtained precipitate, was collected by filtration and washed with cold MeOH, then recrystallized MeOH to give 3.

2, 6-bis(4-(dimethylamino) styryl)-4H-pyrano[3,2-c]-pyran-4-one (3a)

Pale brown powder. Yield: 1.81 g (70%); mp 385-390 ºC; IR: v 1643(C=O), 1639, 1602 (C=C), 1157 (C=O) cm⁻¹; 1H-NMR (400 MHz, CDC1₃): δ 3.04 (s, 12H, Me₂N); 6.16 (s, 2H, pyran); 6.52 (d, 2H, =CH, J = 15.9); 6.71 (d, 4H, =CH Aromatic, J = 8.7); 7.41 (d, 2H, =CH, J = 15.9); 7.47 (d, 4H, =CH Aromatic, J = 8.7); 13C-NMR (100 MHz, C₆D₆): δ 39.2 (CH₃), 111.1 (=CH, pyran), 111.3 (=CH=CH), 113.6 (=CH=CH), 121.9 (=CH, Aromatic), 128.0 (=CH, Aromatic), 129.5 (=CH, Aromatic), 135.0 (=CH, Aromatic), 150.2 (=C, pyran), 161.1 (= C, pyran), 179.0 (C=O); Anal. calc. for C₂₅H₂₃N₂O₃ (386.20): C 77.69; H 6.78; N 7.25; found: C 77.54, H 6.68, N 7.14%.

2, 6-bis(4-(pyrrolidin-1-yl)styryl)-4H-pyrano[3,2-c]-pyran-4-one (3b)

Brown powder. Yield: 2.34 g (80%); mp 265-270 ºC; IR: v 1639 (C=O), 1585, 1519 (C=C), 1169 (C=O) cm⁻¹; 1H-NMR (400 MHz, C₆D₆): δ 2.03 (m, 8H, CH₂); 3.33-3.36 (m, 8H, CH₂N); 6.18 (s, 2H, pyran); 6.55 (d, 4H, =CH Aromatic, J = 8.3); 6.87 (d, 2H, =CH, J = 15.6); 7.50 (d, 4H, =CH Aromatic, J = 8.3); 7.68 (d, 2H, =CH, J = 8.4); 13C-NMR (100 MHz, C₆D₆): δ 28.6 (CH₂), 46.5 (CH₂N), 110.6 (=CH, pyran), 119.7 (HC=CH), 121.2 (HC=CH), 123.48 (=CH, Aromatic), 126.44 (=CH, Aromatic), 129.2 (=CH, Aromatic), 142.1 (=C, pyran), 148.2 (C=N), 187.8 (C=O). Anal. calc. for C₂₆H₂₃N₂O₃ (438.23): C 79.42, H 6.89, N 6.39; found: C 79.12, H 6.82, N 6.23%.

2, 6-bis(4-(piperidin-1-yl)styryl)-4H-pyrano[3,2-c]-pyran-4-one (3c)

Brown powder. Yield: 2.34 g (75%); mp 276-280 ºC; IR: v 1639 (C=O), 1598, 1585 (C=C), 1178 (C=O) cm⁻¹; 1H-NMR (400 MHz, C₆D₆): δ 1.69-1.70 (m, 12H, CH₂); 3.29 (t, 8H, CH₂); 6.18 (s, 2H, pyran); 6.54 (d, 2H, =CH, J = 15.9); 6.91 (d, 4H, =CH Aromatic, J = 8.7); 7.39 (d, 2H, =CH, J = 15.9); 7.46 (d, 4H, =CH Aromatic, J = 8.7); 13C-NMR (100 MHz, C₆D₆): δ 24.6 (CH₃), 28.6 (CH₂), 48.3 (CH₂N), 111.5 (=CH, pyran), 114.1 (HC=CH), 114.8 (HC=CH), 127.9 (=CH, Aromatic), 128.9 (=CH, Aromatic), 129.4 (=CH, Aromatic), 134.7 (=C, pyran), 161.0 (C=N), 179.5 (C=O). Anal. calc. for C₂₆H₂₃N₂O₃ (466.26): C 79.79, H 7.34, N 6.00; found: C 79.5, H 7.24, N 5.96%.
2,6-bis(4-morpholinostyryl)-4H-pyran-4-one (3d)

Pale brown powder. Yield: 2.45 g (78%); mp 290-292 ºC; IR: v 2195 (C≡N), 1638, 1592 (C=C) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 3.24 (t, 8H, CH₃); 3.86 (t, 8H, CH₂); 6.16 (s, 2H, pyran); 6.51 (d, 2H, =CH, J = 16.0); 6.89 (d, 4H, =CH Aromatic, J = 8.2); 7.30 (d, 2H, =CH, J = 16.0); 7.45 (d, 4H, =CH Aromatic, J = 8.2); ¹³C-NMR (100 MHz, CDCl₃): δ 47.1 (CH₂N), 65.6 (CH₂O), 113.1 (=CH, pyran), 115.2 (HC=CH), 116.4 (HC=CH), 125.0 (=CH, Aromatic), 127.8 (=CH, Aromatic), 134.3 (=CH, Aromatic), 150.9 (=CH, pyran), 163.7 (C=N), 179.3 (C=O). Anal. calc. for C₆₂H₆₂N₄O₈ (470.22): C 73.83, H 6.12, N 5.86%.

General procedure for synthesis of 2-(2,6-bis(4-(dialkylamino)styryl)-4H-pyran-4-ylidene)malononitrile (5)

A mixture of compound 3 (2.59 mmol) and malononitrile (2.64 mmol) in 6 ml acetic anhydride was stirred for 1 h at 150 ºC. The reaction was controlled with TLC by the quantity of compound 3 in solution of reaction, after completion of the reaction, saturated NaHCO₃ was added, and the mixture was extracted with CH₂Cl₂ (3 × 5 ml). The organic phase was concentrated under vacuum and the residue was purified by column chromatography over silica gel and hexane: EtOAc (3:2) as eluent to afford corresponding products.

2-(2,6-bis(4-(dimethylamino)styryl)-4H-pyran-4-ylidene) malononitrile (5a)

Green powder. Yield: 0.67 g (60%); mp 295-300 ºC; IR: v 2192 (C≡N), 1639, 1591 (C=C) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 3.05 (s, 12H, Me₃); 3.24 (t, 8H, CH₂), 3.33 (t, 8H, CH₂); 2.03 (m, 8H, CH₂); 6.37 (m, 8H, CH₂N); 6.47 (d, 2H, =CH, J = 15.8); 6.51 (s, 2H, pyran); 6.56 (d, 4H, =CH Aromatic, J = 8.4); 7.44 (d, 2H, =CH, J = 15.7); 7.45 (d, 4H, =CH Aromatic, J = 8.4); ¹³C-NMR (100 MHz, CDCl₃): δ 22.4 (CH₂), 46.5 (CH₂N), 70.4 (C-CN), 110.6 (=CH, pyran), 115.4 (C=N), 120.8 (HC=CH), 121.4 (HC=CH), 128.7 (=CH, Aromatic), 137.4 (=CH, Aromatic), 148.2 (=CH, Aromatic), 155.1 (=CH-N, Aromatic), 158.4 (=C, pyran), 178.5 (C=C-CN, pyran). Anal. calc. for C₂₉H₂₆N₄O (486.24): C 78.98, H 6.21, N 10.89; found: C 78.7, H 6.15, N 10.89.

2-(2,6-bis(4-(piperidin-1-yl)styryl)-4H-pyran-4-ylidene) malononitrile (5c)

Red powder. Yield: 0.73 g (55%); mp 347-350 ºC; IR: v 2201 (C≡N), 1636, 1597 (C=C) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 1.68-1.70 (m, 12H, CH₂), 3.33 (t, 8H, CH₂N); 6.55 (d, 2H, =CH, J = 15.8); 6.58 (s, 2H, pyran); 6.91 (d, 4H, =CH Aromatic, J = 8.6); 7.44 (d, 2H, =CH, J = 15.6); 7.46 (d, 4H, =CH Aromatic, J = 8.6); ¹³C-NMR (100 MHz, CDCl₃): δ 29.1 (CH₂), 30.4 (CH₂), 47.9 (CH₂N), 70.3 (C-CN), 104.7 (=CH, pyran), 113.0 (C=N), 123.0 (HC=CH), 128.4 (HC=CH), 136.9 (=CH, Aromatic), 150.2 (=CH, Aromatic), 158.4 (=CH-N, Aromatic), 158.8 (=C, pyran), 178.8 (C=C-CN, pyran). Anal. calc. for C₃₅H₃₅N₅O (514.27): C 79.35, H 6.66, N 10.89; found: C 79.72, H 6.50, N 10.86.

RESULTS AND DISCUSSION

Synthetic routes employed for the preparation of pyron derivatives are shown in Scheme 1, the reaction of
two equivalent of compound 1 with 2 afforded mainly bis substituted derivative (3), in 52-65 % yields, without the presence of mono condensate compounds as a byproduct. The reaction was conducted under room temperature with the MeONa in dry methanol. Full characterization involving IR, 1H NMR and 13C NMR proved the identity of 3.

The dicyanomethylenepyran derivatives (DCM analogues) have the typical donor–π-acceptor (D–π-A) structure that has attracted considerable attention because of their potential applications in Organic light-emitting devices (OLEDs). Therefore we decided to the synthesis of 2-(2-(6-bis(4-(dialkylamino)styryl)-4H-pyran-4-ylidene)malononitrile (5) derivatives (Scheme 2). These Compounds were prepared from the reaction of 3 and malononitrile in AC$_2$O at reflux temperature for 1 h. In FT-IR spectra the appearance stretching vibration band at 2192 cm$^{-1}$ corresponding to C≡N and the complete disappearance of C=O peaks in 1656 cm$^{-1}$ were confirmed the preparation of respective compounds.

The structure of compounds 5a-d was deduced from their IR, 1H NMR and13C NMR spectra. For example the the 1H NMR spectrum of 5a exhibited singlet signal

Scheme 1: Synthesis of 2,6-Bis-[2-(4-dialkylaminophenyl) vinyl]-4H-Pyran-4-one 3.

Scheme 2: Synthesis of 2-(2,6-bis(4-(dialkylamino)styril)-4H-pyran-4-ylidene)malononitrile 5.
CONCLUSIONS

In this study, we report the efficient and convenient method for synthesis of 2,6-bis (4-(dialkylamino) styryl)-4H-pyran-4-one starting through the reaction of 4- (dialkylamino) benzaldehyde with 2,6-dimethyl-4H-

pyran-4-one in the presence of NaOMe is described. Additionally, preparation of new types of bis condensed DCM derivatives for application in organic light-emitting diodes is therewith via reaction of malononitrile with 2,6-bis (4-(dialkylamino) styryl) -4H-pyran-4-one.

Acknowledgments

We gratefully acknowledge the financial support for this work by the Research Council of University of Tabriz.

Received : May 20, 2017 ; Accepted : Dec. 18, 2017

REFERENCES

Table 1: Absorption spectral data of 5(a-d) compounds in dichloromethane solution.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\lambda_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>490</td>
</tr>
<tr>
<td>5b</td>
<td>496</td>
</tr>
<tr>
<td>5c</td>
<td>471</td>
</tr>
<tr>
<td>5d</td>
<td>460</td>
</tr>
</tbody>
</table>

Fig. 1: Normalized UV-Vis absorption of 5(a-d) compounds in dichloromethane solution.

