Effects of Sol Concentration on the Structural and Optical Properties of SnO2 Nanoparticle

Document Type: Research Article

Authors

1 Department of Physics, Faculty of Science, Payame Noor University, I.R. IRAN

2 Department of Physics, Faculty of Science, Shahid Chamran University, Ahwaz, I.R. IRAN

Abstract

In this paper, the effects of changes in Sol concentration on the structural and optical properties of SnO2 Nanoparticles are studied through the Sol-Gel method. SnO2 Nanoparticles are produced from different SnO2 solution concentrations (0.1, 0.3 and 0.5 mol/L) at room temperature.  X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analysis are used to investigate the effects of changes in Sol concentration on the crystalline and surface morphology of Nanoparticles. The XRD pattern shows that the particles are in the standard tetragonal phase of SnO2. The crystallites sizes are 11.7nm, 18.8nm, and 74.8nm, for 0.1 M, 0.3M and 0.5 M of concentration respectively. The average size of SnO2 particles decreases by a reduction in the Sol concentration. The band gap value is 4.07eV, 4.28eV and 4.36eV for 0.5M, 0.3M and 0.1M of concentration respectively. The UV-Visible analysis shows that decreasing the Sol concentration will cause the absorption edge shift to the shorter wavelengths, coz decreasing the Sol concentration will reduce the Nanoparticles size, and smaller Nanoparticles size absorb shorter wavelengths better and also increase the band gap.

Keywords

Main Subjects


[1] Vincent. C.A., The Nature of Semi Conductivity in Polycrystalline Tin OxideJournal of The Electrochemical Society119: 515-518 (1972).

[2] Chopra K.L., Major S., Pandya D.K., Transparent Conductors—A Status ReviewThin Solid Films102(1): 1-46 (1983).

[3] Chen Z., Lai J.K.L., Shek C.H., Chen H., Synthesis and Structural Characterization of Rutile SnO2 Nanocrystals. Journal of Materials Research18(06): 1289-1292 (2003).

[4] Popova L.me., Michailov M.G., Gueorguiev V.K., Shopov A., Structure and Morphology of Thin SnO2 Films, Thin Solid Films186: 107-112 (1990).

[5] Cirera A., Vila A., Dieguez A., Cabot A., Cornet A., Morante J.R., Microwave Processing for the Low Cost, Mass Production of Undoped and in Situ Catalytic Doped Nanosized SnO2 Gas Sensor PowdersSensors and Actuators B: Chemical, 64: 65-69 (2000).

[6] Heilig A., Barsan N., Weimar U., Göpel W., Selectivity Enhancement of SnO2 Gas Sensors: Simultaneous Monitoring of Resistances and TemperaturesSensors and Actuators B: Chemical 58: 302-309 (1999).

[7] Korotcenkov G., Cho B.K., Brinzari V., Gulina L.B., Tolstoy V.P, Catalytically Active Filters Deposited by SILD Method for Inhibiting Sensitivity to Ozone of SnO2-Based Conductometric Gas SensorsFerroelectrics, 459: 46-51 (2014).

[8] b Kadir R., Li Z., Sadek A.Z., Abdul Rani R., Zoolfakar A.S., Field M.R., Ou J.Z., Chrimes A.F., Kalantar-Zadeh K., Electrospun Granular Hollow SnO2 Nanofibers Hydrogen Gas Sensors Operating at Low TemperaturesThe Journal of Physical Chemistry C, 118: 3129-3139 (2014).

[9] Su H.C., Zhang M., Bosze W., Myung N.V., Tin Dioxide Functionalized Single-Walled Carbon Nanotube (SnO2/SWNT)-Based Ammonia Gas Sensors and Their Sensing Mechanism, Journal of The Electrochemical Society, 161: B283-B290 (2014).

[10] Filipovic L., Selberherr S., Mutinati G.C., Brunet E., Steinhauer, S., Köck, A., Teva, J., Kraft, J., Siegert, J., Schrank, F. and Gspan, C., Modeling and Analysis of Spray Pyrolysis Deposited SnO2 Films for Gas SensorsIn Transactions on Engineering Technologies,       : 295-310 (2014).

[11] Pavelko R.G., Yuasa M., Kida T., Shimanoe K., Yamazoe N., Impurity Level in SnO2 Materials and Its Impact on Gas Sensing PropertiesSensors and Actuators B: Chemical210:719-725 (2015).

[12] Ohodnicki P.R., Natesakhawat S., Baltrus J.P., Howard B., Brown T.D., Characterization of Optical, Chemical, and Structural Changes Upon Reduction of Sol-Gel Deposited SnO2 Thin Films for Optical Gas Sensing at High Temperatures
Thin Solid Films, 520: 6243-6249 (2012).

[13] Presley R.E., Munsee C.L., Park C.H., Hong D., Wager J.F., Keszler D.A, Tin Oxide Transparent Thin-Film TransistorsJournal of Physics D: Applied Physics, 37: 2810 (2004).

[14] Novinrooz A., Sarabadani P., Garousi J., Characterization of Pure and Antimony Doped SnO2 Thin Films Prepared by the Sol-Gel TechniqueIranian Journal of Chemistry and Chemical Engineering (IJCCE)25(2): 31-38.(2006)

[15] Sun Y.H., Dong P.P., Lang X., Chen H.Y., Nan J.M., Comparative Study of Electrochemical Performance of SnO2 Anodes with Different Nanostructures for Lithium-Ion BatteriesJournal of Nanoscience and Nanotechnology 15: 5880-5888 (2015).

[16] Peng Z., Shi Z., Liu M, Mesoporous Sn–TiO2 Composite Electrodes for Lithium BatteriesChemical Communications21: 2125-2126 (2000).

[17] Kim H.H., Park C., Choi W., Cho S., Moon B., Son D.me., Low-Temperature-Fabricated ZnO, AZO, and SnO2Nanoparticle-Based Dye-Sensitized Solar CellsJournal of the Korean Physical Society, 65: 1315-1319 (2014).

[18] Zhu Z., Bai Y., Liu X., Chueh C.C., Yang S., Jen A.K.Y., Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron‐Transporting LayerAdvanced Materials28(30): 6478-6484 (2016).

[19] Uzum Felde U., Haase M., Weller H., Electrochromism of Highly Doped Nanocrystalline SnO2: SbThe Journal of Physical Chemistry B104(40): 9388-9395 (2000).

[20] Vequizo J.J.M., Ichimura M., Fabrication of Electrodeposited SnS/SnO2 Heterojunction Solar Cells, Japanese Journal of Applied Physics51(10S): 10NC38 (2012). 

[21] Jeong J.A., Kim H.K., Characteristics of Inkjet-Printed Nano Indium Tin Oxide Particles for Transparent Conducting ElectrodesCurrent Applied Physics10(4): e105-e108 (2010).

[23] Maekawa T., Suzuki K., Takada T., Kobayashi T., Egashira M., Odor Identification Using a SnO 2-Based Sensor ArraySensors and Actuators B: Chemical, 80(1): 51-58 (2001).

[24] Ray S.C., Karanjai M.K., DasGupta D., Tin Dioxide-Based Transparent Semiconducting Films Deposited by the Dip-Coating TechniqueSurface and Coatings Technology102(1):73-80 (1998).

[25] Liu Y.F., Feng J., Zhang Y.F., Cui H.F., Yin D., Bi Y.G., Song J.F., Chen Q.D., Sun H.B., Improved Efficiency of Indium-Tin-Oxide-Free Organic Light-Emitting Devices Using PEDOT: PSS/Graphene Oxide Composite AnodeOrganic Electronics26: 81-85 (2015).

[26] Huang S., Wang Z., Xu J., Wang L., Lu D., Yuan T., Simulation of the Spectra and Determination of the Optical Constants of Online Low-Emission Glass from Visible to Mid-Infrared RegionThin Solid Films517(9): 2963-2967 (2009).

[27] Ozer N., Cronin J.P., Sol-Gel Electrochromic Materials and DevicesIn Key Engineering Materials, 264, 337-342 (2004).

[28] Joy K., Maneeshya L.V., Thomas J.K., Thomas P.V., Effect of Sol Concentration on the Structural, Morphological, Optical and Photoluminescence Properties of Zirconia Thin Films, Thin Solid Films520(7): 2683-2688 (2012).

[29] Sakhare R.D., Navale Y.H., Navale S.T. Patil V.B., Investigation of Structural, Morphological and Electrical Properties of Nanocomposite Based on SnO2 Nanoparticles Filled Polypyrrole MatrixJournal of Materials Science: Materials in Electronics28(15): 1-10 (2017).

[30] Aziz M., Abbas S.S., Baharom W.R.W., Size-Controlled Synthesis of SnO2 Nanoparticles by Sol-Gel Method, Materials Letters91: 31-34 (2013).

[31] Liang C., Shimizu Y., Sasaki T., Koshizaki N., Synthesis of Ultrafine SnO2-x Nanocrystals by Pulsed Laser-Induced Reactive Quenching in Liquid MediumThe Journal of Physical Chemistry B107(35): 9220-9225 (2003).

[32] Dai Z.R., Gole J.L., Stout J.D., Wang Z.L., Tin Oxide Nanowires, Nanoribbons, and NanotubesThe Journal of Physical Chemistry B106(6): 1274-1279 (2002).

[33] Zhu J.J., Zhu J.M., Liao X.H., Fang J.L., Zhou M.G., Chen H.Y., Rapid Synthesis of Nanocrystalline SnO2 Powders by Microwave Heating MethodMaterials Letters53(1): 12-19 (2002).

[34] Pourfayaz F., Khodadadi A., Mortazavi Y., Mohajerzadeh S.S., CeO2 Doped SnO2 Sensor Selective to Ethanol in Presence of CO, LPG and CH4Sensors and Actuators B: Chemical108(1): 172-176 (2005).

[35] Bhadra J., Sarkar D., Field Effect Transistor Fabricated from Polyaniline-Polyvinyl Alcohol NanocompositeIndian Journal of Physics84(6): 693-697 (2010).

[36] Devi S., Srivastva M., Solgel Synthesis and Structural Characterization of Silver-Silica NanocompositesIndian Journal of Physics84(11): 1561-1566 (2010).

[37] Saikia P., Borthakur A., Saikia P.K., Structural, Optical and Electrical Properties of Tin Oxide Thin Film Deposited by APCVD MethodIndian Journal of Physics85(4): 551-558 (2011).

[38] Novinrooz A., Sarabadani P., Rezainik Y., Synthesis and Processing of SnO2, CaSnO3 and Ca2SnO4 Nanopowders by Solid-State Reaction TechniqueIranian Journal of Chemistry and Chemical Engineering (IJCCE), 28(2): 113-119 (2009).

[39] Park J., Lee me., Kim J., Physical and Optical Properties of SnO2/ZnO Film Prepared by an RF Magnetron Sputtering MethodJournal of Nanoscience and Nanotechnology16(3): 2983-2986 (2016)

[40] Abbas S.S., Aboud H., Sol-Gel Grown SnO2 Nanoparticles: Evaluation of Structure, Morphology, and Raman SpectraJournal of Electronic Materials46(11): 1-7 (2017).

[41] Diana T., Devi K.N., Sarma H.N., On the Optical Properties of SnO2 Thin Films Prepared by Sol-Gel MethodIndian Journal of Physics84(6): 687-691 (2010). 

[42] Hench L.L., West J.K., The Sol-Gel ProcessChemical Reviews90(1); 33-72 (1990).

[43] Dutta M., Mridha S., Basak D., Effect of Sol Concentration on the Properties of ZnO Thin Films Prepared by Sol-Gel Technique, Applied Surface Science254(9): 2743-2747 (2008).

[44] Liu J., Zhao X., Duan L., Cao M., Guan M., Guo W., Effect of Solution Concentration on the Structural, Optical and Conductive Properties of ZnO Thin Films Prepared by Sol-Gel Method, Journal of Materials Science: Materials in Electronics24(12): 4932-4937 (2013).

[45] Saravanakumar M., Agilan S., Muthukumarasamy N., Marusamy A., Prabaharan K., Ranjitha A., Maheshwari P.U., Influence of Source Concentration on Structural and Optical Properties of SnO2 Nanoparticles Prepared by Chemical Precipitation MethodIndian Journal of Physics88(8): 831-835 (2014).

[46] Gu Z., Liang P., Liu X., Zhang W., Le Y., Characteristics of Sol-Gel SnO2 Films Treated by Ammonia, Journal of Sol-Gel Science and Technology18(2): 159-166 (2000).

[47] Razeghizadeh A.R., Zalaghi L., Kazeminezhad me., Rafee V, Growth and Optical Properties Investigation of Pure and Al-doped SnO2 Nanostructures by Sol-Gel MethodIranian Journal of Chemistry and Chemical Engineering (IJCCE)
36(5) : 1-8 (2017)

[48] Joint Committee on Powder Diffraction Standards, Powder Diffraction File No.JCPDS-41-1445) (ICSD data).

[49] Razeghizadeh A., Mahmoudi Ghalvandi M., Sohillian F., Rafee V., The Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron SputteringPhysical Chemistry Research5(3): 497-504 (2017).

[50] Razeghizadeh A., Elahi E., Rafee, V., Investigation of UV-Vis Absorbance of TiO2 Thin Films Sensitized with the Mulberry Pigment Cyanidin 
by Sol-Gel Method
Nashrieh Shimi va Mohandesi Shimi Iran35: 1-8 (2016). [in Persian]

[51] Ghadami Jadval Ghadam A., Idrees M., Characterization of CaCO3 Nanoparticles Synthesized by Reverse Microemulsion Technique in Different Concentrations of SurfactantsIranian Journal of Chemistry and Chemical Engineering (IJCCE)32(3): 27-35 (2013).

[52] Pankove J., "Optical Properties of Semiconductors", (Dove Publication Inc., New York, 1971).

[53] Themlin J.M., Sporken R., Darville J., Caudano R., Gilles J.M., Johnson R.L., Resonant-Photoemission Study of SnO2: Cationic Origin of the Defect Band-Gap States, Physical Review B42(18): 11914- (1990).