Growth and Optical Properties Investigation of Pure and Al-doped SnO2 Nanostructures by Sol-Gel Method

Document Type: Research Article

Authors

1 Department of Physics, Faculty of Science, Payamenoor University, P.O. Box 19395-3697 Tehran, I.R. IRAN

2 Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, I.R. IRAN

Abstract

SnO2 nanoparticles with different percentage of Al (5%, 15%, and25%) were synthesized by sol-gel method. The structure and nature of nanoparticles are determined by of X-ray diffraction analysis. Also, morphology of the samples is evaluated by SEM. Moreover, the optical properties of the samples are investigated with UV-Visible and FT-IR. The XRD patterns are indicated that all samples and incorporation aluminum ions into the SnO2 lattice have tetragonal rutile structure. The crystalline size of nanoparticles is decreased with increasing the Al percentage. The SEM results confirmed that the size of nanoparticles decreases with increasing the Al percentage. Also, FT-IR and UV-Visible results showed that the optical band gap of nanoparticles increases with the increasing the Al percentage. Finally, we have used the EDX analysis to study the chemical composition of the products. Pure tin and oxygen have been observed. The doped samples showed the existence of Al atoms in the samples of the crystal structure of SnO2.

Keywords

Main Subjects


[1] Vincent C.A., The Nature of Semi Conductivity in Polycrystalline Tin Oxide, Journal of The Electrochemical Society, 119: 515-518 (1972).

[2] Chopra K.L., Major S., Pandya D.K., Transparent Conductors—A Status Review, Thin Solid Films, 102(1): 1-46 (1983).

[3] Chen Z., Lai J.K.L., Shek C.H., Chen H., Synthesis and Structural Characterization of Rutile SnO2 Nanocrystals. Journal of Materials Research, 18(06): 1289-1292 (2003).

[4] Cirera A., Vila A., Dieguez A., Cabot A., Cornet A., Morante J.R., Microwave Processing for the Low Cost, Mass Production of Undoped and in Situ Catalytic Doped Nanosized SnO2 Gas Sensor Powders, Sensors and Actuators B: Chemical, 64(1): 65-69 (2000).

[5] Liu Y., Jiao Y., Zhang Z., Qu F., Umar A., Wu X., Hierarchical SnO2 Nanostructures Made of Intermingled Ultrathin Nanosheets for Environmental Remediation, Smart Gas Sensor, and Supercapacitor Applications. ACS Applied Materials & Interfaces, 6(3): 2174-2184 (2014).

[6] Suematsu K., Shin Y., Hua Z., Yoshida K., Yuasa M., Kida T., Shimanoe K., Nanoparticle Cluster Gas Sensor: Controlled Clustering of SnO2 Nanoparticles for Highly Sensitive Toluene Detection, ACS Applied Materials & Interfaces, 6(7): 5319-5326 (2014).

[7] Huu N.K., Son D.Y., Jang I.H., Lee C.R., Park N.G., Hierarchical SnO2 Nanoparticle-ZnO Nanorod Photoanode for Improving Transport and Life Time of Photoinjected Electrons in Dye-Sensitized Solar Cell, ACS Applied Materials & interfaces, 5(3): 1038-1043 (2013).

[9] Pang H., Yang H., Guo C.X., Li C.M., Functionalization of SnO2 Photoanode Through Mg-Doping and TiO2-Coating to Synergically Boost Dye-Sensitized Solar Cell Performance, ACS Applied Materials & Interfaces, 4(11): 6261-6265 (2012).

[11] Paraguay-Delgado F., Antúnez-Flores W., Miki-Yoshida M., Aguilar-Elguezabal A., Santiago P., Diaz R., Ascencio J.A., Structural Analysis and Growing Mechanisms for Long SnO2 Nanorods Synthesized by Spray Pyrolysis, Nanotechnology, 16(6: 688 (2005).

[12] Geraldo V., Scalvi L.V.D.A., Morais E.A.D., Santilli C.V., Pulcinelli S.H., Sb Doping Effects and Oxygen Adsorption in SnO2 Thin Films Deposited Via Sol-Gel, Materials Research, 6(4): 451-456 (2003).

[13] Mishra S., Ghanshyam C., Ram N., Singh S., Bajpai R.P., Bedi R.K., Alcohol Sensing of Tin Oxide Thin Film Prepared by Sol-Gel Process, Bulletin of Materials Science, 25(3): 231-234 (2002).

[14] Kose H., Aydin A.O., Akbulut H., The Effect of Temperature on Grain Size of SnO2 Nanoparticles Synthesized by Sol Gel Method, Acta Physica Polonica A, 12 (2): 345-347(2014).

[15] Tripathy S.K., Hota B.P., Influence of the Substrates Nature on Optical and Structural Characteristics of SnO2 Thin Film Prepared by Sol-Gel Technique, Journal of Nano-and Electronic Physics, 5(3): 3012-1 (2013).

[16] Gaber A., Abdel-Rahim M.A., Abdel-Latief A.Y., Abdel-Salam M.N., Influence of Calcination Temperature on the Structure and Porosity of Nanocrystalline SnO2 Synthesized by a Conventional Precipitation Method, Int. J. Electrochem Sci., 9(1): 81-95 (2014).

[17] Goswami Y.C., Kumar V., Rajaram P., Ganesan V., Malik M.A., O’Brien P., Synthesis of SnO2 Nanostructures by Ultrasonic-Assisted Sol–Gel Method, Journal of Sol-Gel Science and Technology, 69(3): 617-624 (2014).

[18] Kim M., Marom N., Bobbitt S., Chelikowsky J.R., The Electronic and Structural Properties of SnO2 Nanoparticles Doped with Antimony and Fluorine, In APS Meeting Abstracts, 1: 44011 (2014).

[19] Novinrooz A., Sarabadani P., Garousi J., Characterization of Pure and Antimony Doped SnO2 Thin Films Pepared by the Sol-Gel Technique, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 25(2): 31-38 (2006)

[20] Gu F., Wang S.F., Lü M.K., Zhou G.J., Xu D., Yuan D.R., Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol-Gel Method, The Journal of Physical Chemistry B, 108(24): 8119-8123 (2004).

[21] Razeghizadeh A., Elahi E., Rafee V., Investigation of UV-Vis Absorbance of TiO2 Thin Films Sensitized with the Mulberry Pigment Cyanidin by Sol-Gel Method. Nashrieh Shimi va Mohandesi Shimi Iran, 35(2): 1-8 (2016). [in Persian]

[22] Razeghizadeh A., Mahmoudi Ghalvandi M., Sohillian F., Rafee V., The Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron Sputtering. Physical Chemistry Research. 5(3):497-504 (2017).

[23] Pankove J. I, Optical Processes in Semiconductors (Dover Publications Inc., New York), P. 1971, (1971)

[24] Themlin J.M., Sporken R., Darville J., Caudano R., Gilles J.M., Johnson R.L., Resonant-Photoemission Study of SnO2: Cationic Origin of the Defect Band-Gap States, Physical Review B, 42(18): 11914- (1990).

[26] Nakamoto K, “Infrared and Raman Spectra of Inorganic and Coordination Compounds”, 4th edn. (John Wiley & Sons, Inc) p 183, (1906).

[27] Gu Z,. Liang P., Liu X., Zhang W., Le Y., J. Sol-Gel Sci. Technol., 10: 159-  (2000).

[28] Nakamoto K (ed), “Infrared Spectra of Inorganic and Coordinated Compounds”, (John Wiley & Sons, Inc), p 76, 06, (1963)

[29] Gallardo-Amores J.M., Armaroli T., Ramis G., Finocchio E., Busca G., Appl. Catal, B22: 249- (1999).