Synthesis and Characterization of Sunflower Oil-Based Polysulfide Polymer/Cloisite 30B Nanocomposites

Document Type: Research Article

Authors

1 Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, I.R. IRAN

2 Department of Surface Coating and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, I.R. IRAN

Abstract

In current work, halogenated sunflower oil was reacted with Na2S3 to produce sunflower oil-based polysulfide polymer. Cloisite 30B as organomodified nanoclay was used in different contents to investigate its effect on the properties of the synthesized polymer. All nanocomposites were prepared via in situ polymerization method in aqueous media. Fourier Transform-InfraRed (FT-IR) spectroscopy revealed the inclusion of nanoclay in a polymeric matrix.X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) were used to study the degree of intercalation/exfoliation of nanoplatelets in matrices. Proton Nuclear Magnetic Resonance (1H NMR) was utilized to study the molecular weight of synthesized polymers. Thermal stability of nanocomposites was determined by means of Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) was used to investigate thermophysical properties. According to results, nanocomposite with 1 wt. % of Cloisite 30B showed an exfoliated morphology whereas the higher amount of nanoclay resulted in intercalated nanoplatelets with different degrees of intercalation. Also, adding more Cloisite 30B nanoplatelets led to more decrease in molecular weight. After the introduction of nanoclay into nanocomposites structure and increasing its content, the thermal stability of nanocomposites was improved whereas no significant improvement of thermal stability was observed by increasing clay content from 3 to 5 wt. %. Also, all samples showed only the glass transition temperature (Tg) and no distinct peak related to melting was observed. Adding more nanoclay resulted in higher Tg value due to the confinement effect of nanoplatelets.

Keywords

Main Subjects


[1] Farajpour T., Bayat Y., Keshavarz M. H., Zanjirian E., Investigating the Effect of Modifier Chain Length on Insulation Properties of Polysulfide Modified Epoxy Resin, Iran. J. Chem. Chem. Eng. (IJCCE), 33 (1): 37-44 (2014).

[2] Abdouss M., Farajpour T., Derakhshani M., The Effect of Epoxy-Polysulfide Copolymer Curing Methods on Mechanical-Dynamical and Morphological Properties, Iran. J. Chem. Chem. Eng. (IJCCE), 30 (4): 37-44 (2011).

[3] Kariminejad B., Salami-Kalajahi M., Roghani-Mamaqani H., Thermophysical Behaviour of Matrix-Grafted Graphene/poly(Ethylene Tetrasulphide) Nanocomposites, RSC Adv., 5(121): 100369-100377 (2015).

      DOI: https://doi.org/10.1039/C5RA20254J.

[4] Allahbakhsh A., Sheydaei M., Mazinani S., Kalaee M., Enhanced Thermal Properties of Poly(ethylene tetrasulfide) via Expanded Graphite Incorporation by in Situ Polymerization Method, High Perform. Polym., 25(5): 576-583 (2013).

      DOI: https://doi.org/10.1177/0954008313476314.

       DOI: https://doi.org/10.1002/app.22690.

       DOI: https://doi.org/10.1016/j.wear.2004.08.009.

[7] Han S.-C., Song M.-S., Lee H., Kim H.-S., Ahn H.-J., Lee J.-Y., Effect of Multiwalled Carbon Nanotubes on Electrochemical Properties of Lithium/Sulfur Rechargeable Batteries, J. Electrochem. Soc., 150(7): A889-A893 (2003).

       DOI: https://doi.org/10.1149/1.1576766.

[8] Kariminejad B., Salami-Kalajahi M., Roghani-Mamaqani H., Noparvar-Qarebagh A., Effect of Surface Chemistry of Graphene and Its Content on the Properties of Ethylene Dichloride- and Disodium Tetrasulfide-Based Polysulfide Polymer Nanocomposites, Polym. Compos., 38(S1): E515-E524 (2017).

      DOI: https://doi.org/10.1002/pc.23857.

[9] Rahimi-Razin S., Salami-Kalajahi M., Haddadi-Asl V., Roghani-Mamaqani H., Effect of Different Modified Nanoclays on the Kinetics of Preparation and Properties of Polymer-based Nanocomposites, J. Polym. Res., 19(9): 9954 (2012).

      DOI: https://doi.org/10.1007/s10965-012-9954-x.

[10] Ahmadian-Alam L., Haddadi-Asl V., Hatami L., Roghani-Mamaqani H., Salami-Kalajahi M., Kinetic Study of In Situ Normal and AGET Atom Transfer Radical Copolymerization of n-butyl Acrylate and Styrene: Effect of Nanoclay Loading and Catalyst Concentration, Int. J. Chem. Kinet., 44 (12), 789-799 (2012).

       DOI: https://doi.org/10.1002/kin.20729.

[11] Khezri Kh., Haddadi-Asl V., Roghani-Mamaqani H., Salami-Kalajahi M., Nanoclay Encapsulated Polystyrene Microspheres by Reverse Atom Transfer Radical Polymerization, Polym. Compos., 33(6): 990-998 (2012).

      DOI: https://doi.org/10.1002/pc.22233.

[12] Khezri Kh., Haddadi-Asl V., Roghani-Mamaqani H., Salami-Kalajahi M., Polystyrene-Organoclay Nanocomposites Produced by in situ Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization, J. Polym. Eng., 32(4-5): 235-243 (2012).

      DOI: https://doi.org/10.1515/polyeng-2012-0029.

[13] Torkpur-Biglarianzadeh M., Salami-Kalajahi M., Multilayer Fluorescent Magnetic Nanoparticles with Dual Thermoresponsive and pH-sensitive Polymeric Nanolayers as Anti-cancer Drug Carriers, RSC Adv., 5 (38), 29653-29662 (2015).

      DOI: https://doi.org/10.1039/C5RA01444A.

[14] Moqadam S., Salami-Kalajahi M., Halogenated Sunflower Oil as a Precursor for Synthesis of Polysulfide Polymer, e-Polymers, 16(1): 33-39 (2016).

       DOI: https://doi.org/10.1515/epoly-2015-0152.

       DOI: https://doi.org/10.1039/C4RA01701C.

[16] Amirshaqaqi N., Salami-Kalajahi M., Mahdavian M., Investigation of corrosion behavior of aluminum flakes coated by polymeric nanolayer: Effect of polymer type, Corros. Sci., 87: 392-396 (2014).

       DOI: https://doi.org/10.1016/j.corsci.2014.06.045.

       DOI: https://doi.org/10.1002/adv.21372.

[18] Nikdel M., Salami-Kalajahi M., Salami Hosseini M., Dual thermo- and pH-sensitive Poly(2-hydroxyethyl methacrylate-co-acrylic acid)-grafted Graphene Oxide, Colloid Polym. Sci., 292(10): 2599-2610 (2014).

       DOI: https://doi.org/10.1007/s00396-014-3313-x.

[19] Roghani-Mamaqani H., Haddadi-Asl V., Najafi M., Salami-Kalajahi M., Well-defined Nanofiberous Polystyrene Nanocomposites with Twofold Chains by ATRP, Polym. Sci. Ser. B, 54(3-4): 153-160 (2012).

       DOI: https://doi.org/10.1134/S1560090412030074.

[20] Roghani-Mamaqani H., Haddadi-Asl V., Najafi M., Salami-Kalajahi M., Evaluation of the Confinement Effect of Nanoclay on the Kinetics of Styrene Atom Transfer Radical Polymerization, J. Appl. Polym. Sci., 123(1): 409-417 (2012).

       DOI: https://doi.org/10.1002/app.34511.

[21] Khezri Kh., Haddadi-Asl V., Roghani-Mamaqani H., Salami-Kalajahi M., Synthesis of Well-defined Clay Encapsulated Poly (Styrene-co- Butyl acrylate) Nanocomposite Latexes via Reverse Atom Transfer Radical Polymerization in Miniemulsion, J. Polym. Eng., 32(2): 111-119 (2012).

       DOI: https://doi.org/10.1515/polyeng-2011-0149.

[22] Tajeddin B., Ramedani N., Preparation and Characterization (Mechanical and Water Absorption Properties) of CMC/PVA/Clay Nanocomposite Films, Iran. J. Chem. Chem. Eng. (IJCCE), 35 (3): 9-15 (2016).

[23] Argyropoulos D. S., Hou Y., Ganesaratnam R., Harpp D. N., Koda K., Quantitative 1H NMR Analysis of Alkaline Polysulfide Solutions, Holzforschung, 59(2): 124-131 (2005).

       DOI: https://doi.org/10.1515/HF.2005.019.

[24] Salami-Kalajahi M., Haddadi-Asl V., Behboodi-Sadabad F., Rahimi-Razin S., Roghani-Mamaqani H., Effect of Silica Nanoparticle Loading and Surface Modification on the Kinetics of RAFT Polymerization,
J. Polym. Eng., 32(1): 13-22 (2012).

       DOI: https://doi.org/10.1515/polyeng.2011.601.

DOI: https://doi.org/10.1021/ie500892b.

[26] Rahimi-Razin S., Haddadi-Asl V., Salami-Kalajahi M., Behboodi-Sadabad F., Roghani-Mamaqani H., Properties of Matrix-grafted Multi-Walled Carbon Nanotube/Poly(methyl methacrylate) Nanocomposites Synthesized by In Situ Reversible Addition-Fragmentation Chain Transfer Polymerization, J. Iran. Chem. Soc., 9(6): 877-887 (2012).

      DOI: https://doi.org/10.1007/s13738-012-0104-5.

[27] Amirshaqaqi N., Salami-Kalajahi M., Mahdavian M., Corrosion Behavior of Aluminum/Silica/Polystyrene Nanostructured Hybrid Fakes, Iran. Polym. J., 23(9): 699-706.

       DOI: https://doi.org/10.1007/s13726-014-0264-5.

[28] Jahanmardi R., Eslami B., Tamaddon H., Effects of Nanoclay on Cellular Morphology and Water Absorption Capacity of Poly(vinyl alcohol) Foam, Iran. J. Chem. Chem. Eng. (IJCCE), (2017), accepted.

[29] Salami-Kalajahi M., Haddadi-Asl V., Rahimi-Razin S., Behboodi-Sadabad F., Roghani-Mamaqani H., Najafi M., Effect of Loading and Surface Modification of Nanoparticles on the Properties of PMMA/Silica Nanocomposites Prepared via In situ Free Radical Polymerization, Int. J. Polym. Mater., 62(6): 336-344 (2013).

       DOI: http://dx.doi.org/10.1080/00914037.2012.670826.

[30] Hatami L., Haddadi‐Asl V., Roghani‐Mamaqani H., Ahmadian‐Alam L., Salami‐Kalajahi M., Synthesis and Characterization of Poly (styrene‐co‐butyl acrylate)/clay Nanocomposite Latexes in Miniemulsion by AGET ATRP, Polym. Compos., 32(6): 967-975 (2011).

       DOI: https://doi.org/10.1002/pc.21115.

       DOI: https://doi.org/10.1002/pc.21229.

[32] Saeed K., Park S.-Y., Preparation and Properties of Polycaprolactone/Poly (Butylene Terephthalate) Blend, Iran. J. Chem. Chem. Eng. (IJCCE), 29(3): 77-81 (2010).

[33] Sarsabili M., Parvini M., Salami-Kalajahi M., Asfadeh A., Effect of MCM-41 Nanoparticles on the Kinetics of Free Radical and RAFT Polymerization of Styrene, Iran. Polym. J., 22(3): 155-163 (2013).

       DOI: https://doi.org/10.1007/s13726-012-0114-2.