Investigating the Effect of Modifier Chain Length on Insulation Properties of Polysulfide Modified Epoxy Resin

Document Type: Research Article

Authors

1 Department of Chemistry, Malek Ashtar University of Technology, Tehran, I.R. IRAN

2 Space Transportation Research Institute, Iranian Space Research Center, Tehran, I.R. IRAN

Abstract

Polysulfide resins,with trade name of  G4 and G112, with short and long chain lengths respectively, were used as reactive modifiers to toughen epoxy resin. The effects of molecular weights of G4 and G112 on impact resistance, dielectric constant, thermal conductivity as well as decomposition  heat and adhesion properties of toughened epoxy were investigated. The impact strength and the dielectric constant of epoxy resin were enhanced by increasing of polysulfide so that the effect of the G112 is higher than the G4. For the same weight percent of G4 and G112, the G112 modified epoxy resin has lower Cure enthalpy than the G4 modified epoxy resin. Addition of modifier with long chain up to 10 weight percent was also leaded to higher bond strength with aluminum sheets. also, It is observed that the thermal conductivity of epoxy decreasing with incresing modifier chain length.  

Keywords

Main Subjects


[1] Thomas R., Yumei D., Yuelong, H., Le Y., Moldenaers P., Weimin Y., Czigany T., Thomas S. Miscibility, Morphology, Thermal, and Mechanical Properties of a DGEBA Based Epoxy Resin Toughened with a Liquid Rubber,  Polymer, 49(1), p.278 (2008).

[2] Ratna D., Bantia Ajit K. Rubber Toughened Epoxy, Macromolecular Research, 12(1), p. 3265 (2004).

[3] Chiang Kuan  H.,  Bin Dai J., Ma J.,A Reactive Polymer for Toughening Epoxy Resin, J. Appl. Polym. Sci., 115(6), p. 3265 (2010).

[4] Khorasani H., Amini J., Ghanei M. Flow-Injection Amperometric Determination of Ascorbic Acid Using a Graphite-Epoxy Composite Electrode Modified With Cobalt Phthalocyanine, Iranian Journal of Chemistry and Chemical Engineering, 20(2), p.66 (2001).

[5] Ma  J.,  Song Mo   M., Sheng Du   X., Rong Dai  S.,  Luck  I., Study of Epoxy Toughened by in situ Formed Rubber Nanoparticles, J. Appl. Polym. Sci., 110(1), p.304 (2008).

[6] Zaioncz S., A. Silva A., S. Sirqueira A., G. Soares B., Toughening of Epoxy Resin by Methyl Methacrylate/2-Ethylhexyl Acrylate Copolymers: The Effect of Copolymer Composition, Macromolecular Materials and Engineering, 292(12), p.1263 (2007).

[7] Songqi M., Weiqu L., Chaohui H., Zhengfang W., Chunyi T., Toughening of Epoxy Resin System Using a Novel Dendritic Polysiloxane, Macromolecular Research., 18(4), p.392 (2010).

[8] Wilford A., Terence Kemp  J., Howarth  W., Lee Timothy C.P., Phase Separation of Polysulfide Polymers in Epoxy Adhesives, Int. J. Adhesion and Adhesives., 12(3), p.171 (1992).

[9] Kemp Terence J., Wilford A., Howarth W., Lee Timothy C.P., Structural and Materials Properties of a Polysulphide-Modified Epoxy ResinPolymer, 33(9), p.1860 (1992).

[10] Abdouss M., Farajpour T., Derakhshani M., Investigating of Polysulfide and Epoxy-Polysulfide Copolymer Curing, Mat.-wiss. u.Werkstofftech., 41(10), p.884 (2010).

[11] Abdouss  M., Farajpour  T., Derakhshani M., The Effect of Epoxy-Polysulfide copolymer Curing Methods on Mechanical-Dynamical and Morphological Properties, Iranian Journal of Chemistry and Chemical Engineering, 30(4), p. 37 (2011).

[12] Agrawal J.P., Agawane N.T., Flexibilized Novalac Epoxy Resin for Inhibition of Composite Propellants, Journal of Propulsion and Power, 17(5), p.1035 (2001).

[13] Francis B., Rao V. Lakshmana, Ramaswamy R., Jose S., Thomas S., Raju K., Morphology, Viscoelastic Properties, and Mechanical Behavior of Epoxy Resin Modified with Hydroxyl-Terminated Poly(Ether Ether Ketone) Oligomer with Pendent Tert-Butyl Groups, Polymer Engineering and Science, 45(12), p.1645 (2005).

[14] Blanco M., Lopez M., Fernandez R., Martín L., C. Riccardi C., Mondragon I., Thermoplastic-Modified Epoxy Resins Cured with Different Functionalities Amine Mixtures. Kinetics and Miscibility Study, J. Thermal Analysis and Calorimetry, 97(3), p.969 (2009).

[15] Samanta B.C., Maity T., Dalai S., Mechanical Properties of Modified Epoxy: Effect of Chain Length, Pigment and Resin Technology, 35(4), p.216 (2006).

[16] Morell  N., Erber  M., Ramis X., New Epoxy Thermosets Modified with Hyperbranched Poly(Ester-Amide) of Different Molecular Weight, European Polymer Journal, 20(1), p.1 (2009).

[17] Yang Hua, Qing-Qing Ni, Atsuhiko Yamanaka, Yoshihiko Teramoto, The Development of Composites with Negative Thermal Expansion Properties Using High Performance Fibers, Advanced Composite Material, 20(5), p.463 (2011).

[18] Park S.J., Jin L.F., Lee R.J., Thermal and Mechanical Properties of Tetrafunctional Epoxy Resin Toughened with Epoxidized Soybean OilMaterial Science and Engineering, A374, p.109 (2004).

[19] Lee Y.J., Shim  M.J., Kim  S.W. Thermal Decomposittion Kinetics of an Epoxy Resin with Rubber-Modified Curing Agent, J. Appl. Polym. Sci., 81, p.479 (2001).

[20] Chattopadhyay D.K., Panda  S.S., Raju  K.V.S.N. Thermal and Mechanical Properties of Epoxy Acrylate /Methacrylates UV Cured Coatings, Progress in Organic Coatings, 54, p.10 (2005).

[21] Jiickel M., Miiller M., Licea Claverie A., Arndt K.F., Thermal Conductivity  of Modified Epoxy Resins with Different Cross-Link Densities at Low Temperatures, Cryogenics, 31, p.228 (1991).

[22] SeungCheol Yang, JungHo Jin, Seung-Yeon Kwak, Byeong-Soo Bae, Photocurable Transparent Cycloaliphatic Epoxy Hybrid Materials Crosslinked by Oxetane, Journal of Applied Polymer Science, DOI 10.1002 (2012).