• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
Articles in Press
Current Issue
Journal Archive
Volume Volume 36 (2017)
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 35 (2016)
Volume Volume 34 (2015)
Volume Volume 33 (2014)
Volume Volume 32 (2013)
Volume Volume 31 (2012)
Volume Volume 30 (2011)
Volume Volume 29 (2010)
Volume Volume 28 (2009)
Volume Volume 27 (2008)
Volume Volume 26 (2007)
Volume Volume 25 (2006)
Volume Volume 24 (2005)
Volume Volume 23 (2004)
Volume Volume 22 (2003)
Volume Volume 21 (2002)
Volume Volume 20 (2001)
Volume Volume 19 (2000)
Volume Volume 18 (1999)
Volume Volume 17 (1998)
Volume Volume 16 (1997)
Volume Volume 15 (1996)
Volume Volume 14 (1995)
Volume Volume 13 (1994)
Volume Volume 12 (1993)
Volume Volume 11 (1992)
Volume Volume 10 (1991)
Volume Volume 9 (1990)
Volume Volume 8 (1989)
Volume Volume 7 (1988)
Volume Volume 6 (1987)
Zakeri, A., Pazouki, M., Vossoughi, M. (2017). Use of Response Surface Methodology Analysis for Xanthan Biopolymer Production by Xanthomonas campestris: Focus on Agitation Rate, Carbon Source, and Temperature. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(1), 173-183.
Ali Zakeri; Mohammad Pazouki; Manouchehr Vossoughi. "Use of Response Surface Methodology Analysis for Xanthan Biopolymer Production by Xanthomonas campestris: Focus on Agitation Rate, Carbon Source, and Temperature". Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36, 1, 2017, 173-183.
Zakeri, A., Pazouki, M., Vossoughi, M. (2017). 'Use of Response Surface Methodology Analysis for Xanthan Biopolymer Production by Xanthomonas campestris: Focus on Agitation Rate, Carbon Source, and Temperature', Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(1), pp. 173-183.
Zakeri, A., Pazouki, M., Vossoughi, M. Use of Response Surface Methodology Analysis for Xanthan Biopolymer Production by Xanthomonas campestris: Focus on Agitation Rate, Carbon Source, and Temperature. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2017; 36(1): 173-183.

Use of Response Surface Methodology Analysis for Xanthan Biopolymer Production by Xanthomonas campestris: Focus on Agitation Rate, Carbon Source, and Temperature

Article 17, Volume 36, Issue 1 - Serial Number 81, March and April 2017, Page 173-183  XML PDF (286 K)
Document Type: Research Article
Authors
Ali Zakeri1; Mohammad Pazouki 2; Manouchehr Vossoughi3
1Environmental Group, Energy Department, Material, and Energy Research Center, Karaj, I.R. IRAN
2Institute of Materials and Energy
3Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, I.R. IRAN
Abstract
The current study is an attempt to contribute for efficient and cost-effective substrates for xanthan gum production. In this context, the sugar cane molasses wastes can be used as a cheap substrate for xanthan gum production. Xanthan biopolymer production by a novel Xanthomonas campestris strain IBRC-M 10644 was optimized with statistical approaches. Based on the results of Response Surface Methodology (RSM) with Central Composite Design (CCD) technique, a second-order polynomial model was developed and evaluated the effects of variables on the maximum xanthan production. Agitation rate (X1: 200-500 rpm), sugar cane molasses concentration (X2: 30-90 g/L) and operation temperature (X3: 25-35 °C) were the factors investigated. The optimal conditions for maximum yield of xanthan production were derived from agitation rate 500 rpm, carbon source concentration 65 g/L and operation temperature 30°C. Under these conditions, xanthan and biomass production were found to be 16.03 g/L and 1.37 g/L, respectively. Our results signify that the sugar cane molasses can be used as a cheap substrate for xanthan biopolymer production.
Keywords
Xanthan; Sugar cane molasses; optimization; Central composite design
Main Subjects
Biotechnology; Oil, Gas & Petrochemistry
References
[1] Rosalam S., England R., Review of Xanthan Gum Production from Unmodified Starches by Xanthomonas Campestris sp, Enzyme Microb. Technol., 39:197-207 (2006).

[2] Bacelo K.L., Hartwig D.D., Seixas F.K., Schuch R., Moreira A.D.S., Amaral M., Xanthan Gum As an Adjuvant in A Subunit Vaccine Preparation Against Leptospirosis, BioMed Res. Int., 6:1-14 (2014).

[3] Ahlgren J.A., Purification and Characterization of A Pyruvated-Mannose-Specific Xanthan Lyase from Heat-Stable, Salt-Tolerant Bacteria, Appl. Environ. Microbiol., 57:2523-2528 (1991).

[4] Garcia-Ochoa F., Santos V.E., Casas J.A., Gomez E., Xanthan Gum: Production, Recovery, and Properties, Biotchnol. Adv., 18:549-579 (2000).

[5] Afendra A.S., Yiannaki E.E., Palaiomylitou M.A., Kyriakidis D.A., Drainas C., Co-Production of Ice Nuclei and Xanthan Gum by Transformed Xanthomonas Campestris Grown in Sugar Beet Molasses, Biotechnol. Lett., 24: 579-583
(2002).

[6] Shu C.H., Yang S.T., Effects of Temperature on Cell-Growth and Xanthan Production in Batch Cultures of Xanthomonas Campestris, Biotechnol. Bioeng., 35:454-568 (1990).

[7] Basaran-Kurbanoglu E., Izzet-Kurbanoglu N., Ram Horn Hydrolysate as Enhancer of Xanthan Production in Batch Culture of Xanthomonas Campestris EBK-4 Isolate, Process Biochem., 42:1146-1149 (2007).

[8] Gilani S.L., Najafpour G.D., Heydarzadeh H.D., Zare H., Kinetic Models for Xanthan Gum Production Using Xanthomonas Campestris from Molasses, Chem. Ind. Chem. Eng. Q., 17(2):179-187 (2011).

[9] Thonart P., Paquot M., Hermans L., Alaoui H., d'Ippolito P.,Xanthan Production by Xanthomonas Campestris NRRL B-1459 and Interfacial Approach by Zeta Potential Measurement, Enz. Microb. Technol., 7:235-238 (1985). 

[10] Ashraf S., Soudi M.R., Sadeghizadeh M., Isolation of A Novel Strain of Xanthomonas Campestris for Xanthan Gum Production Using Whey as the Sole Substrate, Pak. J. Biol. Sci., 11(3):438-442 (2008).

[11]Moshaf S., Hamidi-Esfahani Z., Azizi M.H., Statistical Optimization of Xanthan Gum Production and Influence of Airflow Rates in Lab-Scale Fermentor, Appl. Food Biotechnol., 1(1):17-24 (2014).

[12] Eslami A., Asadi A., Meserghani M., Bahrami H., Optimization of Sonochemical Degradation of Amoxicillin by Sulfate Radicals in Aqueous Solution Using Response Surface Methodology (RSM), J. Mol. Liq., 222:739-744 (2016).

[13] Yousefi N., Pazouki M., Alikhani H.F., Alizadeh M., Statistical Evaluation of the Pertinent Parameters in Bio-synthesis of Ag/MWf-CNT Composites Using Plackett-Burman Design and Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), 35(2):51-62 (2016).

[14] Krishna-Ganduri V.S.R., Unstructured Modeling of Aureobasidium Pullulans Fermentation for Pullulan Production Mathematical Approach, Int. J. Eng. Res. Appl., 3:1076-1079 (2014).

[15] Wang X., Xu P., Yuan Y., Liu C., Zhang D., Modeling for Gellan Gum Production by Sphingomonas Paucimobilis ATCC 31461 in a Simplified Medium, Appl. Environ. Microbiol., 72(5):3367-3374 (2006).

[16] Rajendran A., Thangavelu V., Application of Central Composite Design and Artificial Neural Network for the Optimization of Fermentation Conditions for Lipase Production by Rhizopus Arrhizus MTCC 2233, J. Bioproces Biotechniq., 2(3):1-9 (2012).

[17]Nakajima S., Funahashi H., Yoshida T., Xanthan Gum Production in A Fermentor with Twin Impellers, J. Fermen. Bioengineer., 70(6):392-397 (1990).

[18]Souw P., Demain A.L., Nutritional Studies on Xanthan Production by Xanthomonas Campestris NRRL B-1459, Appl. Environ. Microbiol., 37:1186-1192 (1979).

[19] Serrano-Carren L., Corona R.M., Snchez A., Galindo E., Prediction of Xanthan Fermentation Development by A Model Linking Kinetics, Power Drawn and Mixing, Process. Biochem., 33:133-146 (1998).

[20] Lopez M.J., Moreno J., Ramos-Cormenzana A., Xanthomonas Campestris Strain Selection for Xanthan Production from Olive Mill Wastewaters, Water. Res., 35:1828-1830 (2001).

[21] Papagianni M., Psomas S.K., Batsilas L., Paras S.V., Kyriakidis A., Liakopoulou-Kyriakides M., Xanthan Production by Xanthomonas Campestris in Batch Cultures, Process. Biochem., 37:73-80 (2001).

[22] Moreno J., Lo´pez C., Vargas-Garcı´ M.J., Va´zquez R., Use of Agricultural Wastes for Xanthan Production by Xanthomonas Campestris, J. Ind. Microbiol. Biot., 21:242-246 (1998).

[23] Mason R., Gunst F., Hess L., "Statistical Design and Analysis of Experiments with Application to Engineering and Science",2nd ed., John Wiley and Sons, Canada (2003).

[24] Montgomery D.C.," Design and Analysis of Experiments", 8th ed., John Wiley and Sons, New York (2013).

[25] Haaland P.D., "Experimental Design in Biotechnology", Marcel Dekker, New York (1989).

[26] Liu H.L., Chiou Y.R., Optimal Decolorization Efficiency of Reactive Red 239 by UV/TiO2 Photocatalytic Process Coupled with Response Surface Methodology, Chem. Eng. J., 112:173-179 (2005).

[27] Isar J., Agarwal L., Saran S., Saxena R.K., A Statistical Method for Enhancing the Production of Succinic Acid from Escherichia Coli under Anaerobic Conditions, Bioresour. Technol., 97:1443-1448 (2006).

[28]  Aghaie E., Pazouki M., Hosseini M.R., Ranjbar M., Ghavipanjeh F., Response Surface Methodology (RSM) Aanalysis of Organic Acid Production for Kaolin Beneficiation by Aspergillus Niger, Chem. Eng. J., 147:245-251 (2009).

[29] Peters H.U., Herbst H., Hesselink P.G.M., Lunsdorf H., Schumpe A., Deckwer W.D., The Influence of Agitation Rate on Xanthan Production by Xanthomonas Campestris, Biotechnol. Bioeng., 34:1393-1397 (1989).

[30] Amanullah A., Serrano L.C., Castro B., Galindo E., Nienow A.W., The Influence of Impeller Type in Pilot Scale Xanthan Fermentations, Biotechnol. Bioeng., 57(1):95-108 (1998). 

[31] Garcia F.O, Gomez E., Mass Transfer Coefficient in Stirred Reactors for Xanthan Gum Solutions, J. Biochem. Eng., 1:1-10 (1998).

[32] Sanchez A., Martinez A., Torres L., Galindo E., Power Consumption of Three Impeller Combinations in Mixing Xanthan Fermentation Broths, Process. Biochem., 27:351-365 (1992).

[33] Kalogiannis S., Iakovidou G., Maria L.K., Kyriakidis D.A., Skaracis G.N., Optimization of Xanthan Gum Production by Xanthomonas Campestris Grown in Molasses, Process. Biochem., 39:1-8 (2003).

[34] Shu C.H., Yang S.T., Kinetics and Modeling of Temperature Effects on Batch Xanthan Gum Fermentation, Biotechnol. Bioeng., 37:567-574 (1991).

[35] Box G.E.P., Hunter W.G., Hunter J.S., "Statistics for Experimenters", John Wiley and Sons, New York (2005).

[36] Roseiro J.C., Costa D.C., Collaco M.T.A., Batch and Fed-Batch Cultivation of Xanthomonas Campestris in Carob Extracts, LWT-Food Sci. Technol., 25:289-293 (1992).

[37] Green M., Shelef G., Bilanovic D., The Effect of Various Citrus Waste Fractions on Xanthan Fermentation, Chem. Eng. J., 56:37-41 (1994).

[38] Fernandez-Silva  M., Fornari R.C.G., Mazutti M.A., De-Olivera D., Ferreira-Padhila F., Jose-Cichoski A., Production and Characterization of Xantham Gum by Xanthomonas Campestris Using Cheese Whey as Sole Carbon Source, J. Food Eng., 90:119-123 (2009).

[39] Gils P.S., Ray D., Sahoo P.K., Characteristics of Xanthan Gum-Based Biodegradable Superporous Hydrogen, Int. J. Biol. Macromol., 45: 364-371 (2009).

Statistics
Article View: 543
PDF Download: 677
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

web page hit counter

Journal Management System. Designed by sinaweb.