Use of Response Surface Methodology Analysis for Xanthan Biopolymer Production by Xanthomonas campestris: Focus on Agitation Rate, Carbon Source, and Temperature

Document Type: Research Article

Authors

1 Environmental Group, Energy Department, Material, and Energy Research Center, Karaj, I.R. IRAN

2 Institute of Materials and Energy

3 Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, I.R. IRAN

Abstract

The current study is an attempt to contribute for efficient and cost-effective substrates for xanthan gum production. In this context, the sugar cane molasses wastes can be used as a cheap substrate for xanthan gum production. Xanthan biopolymer production by a novel Xanthomonas campestris strain IBRC-M 10644 was optimized with statistical approaches. Based on the results of Response Surface Methodology (RSM) with Central Composite Design (CCD) technique, a second-order polynomial model was developed and evaluated the effects of variables on the maximum xanthan production. Agitation rate (X1: 200-500 rpm), sugar cane molasses concentration (X2: 30-90 g/L) and operation temperature (X3: 25-35 °C) were the factors investigated. The optimal conditions for maximum yield of xanthan production were derived from agitation rate 500 rpm, carbon source concentration 65 g/L and operation temperature 30°C. Under these conditions, xanthan and biomass production were found to be 16.03 g/L and 1.37 g/L, respectively. Our results signify that the sugar cane molasses can be used as a cheap substrate for xanthan biopolymer production.

Keywords

Main Subjects


[1] Rosalam S., England R., Review of Xanthan Gum Production from Unmodified Starches by Xanthomonas Campestris sp, Enzyme Microb. Technol., 39:197-207 (2006).

[2] Bacelo K.L., Hartwig D.D., Seixas F.K., Schuch R., Moreira A.D.S., Amaral M., Xanthan Gum As an Adjuvant in A Subunit Vaccine Preparation Against Leptospirosis, BioMed Res. Int., 6:1-14 (2014).

[4] Garcia-Ochoa F., Santos V.E., Casas J.A., Gomez E., Xanthan Gum: Production, Recovery, and Properties, Biotchnol. Adv., 18:549-579 (2000).

[5] Afendra A.S., Yiannaki E.E., Palaiomylitou M.A., Kyriakidis D.A., Drainas C., Co-Production of Ice Nuclei and Xanthan Gum by Transformed Xanthomonas Campestris Grown in Sugar Beet Molasses, Biotechnol. Lett., 24: 579-583
(2002).

[7] Basaran-Kurbanoglu E., Izzet-Kurbanoglu N., Ram Horn Hydrolysate as Enhancer of Xanthan Production in Batch Culture of Xanthomonas Campestris EBK-4 Isolate, Process Biochem., 42:1146-1149 (2007).

[8] Gilani S.L., Najafpour G.D., Heydarzadeh H.D., Zare H., Kinetic Models for Xanthan Gum Production Using Xanthomonas Campestris from Molasses, Chem. Ind. Chem. Eng. Q., 17(2):179-187 (2011).

[9] Thonart P., Paquot M., Hermans L., Alaoui H., d'Ippolito P.,Xanthan Production by Xanthomonas Campestris NRRL B-1459 and Interfacial Approach by Zeta Potential Measurement, Enz. Microb. Technol., 7:235-238 (1985). 

[10] Ashraf S., Soudi M.R., Sadeghizadeh M., Isolation of A Novel Strain of Xanthomonas Campestris for Xanthan Gum Production Using Whey as the Sole Substrate, Pak. J. Biol. Sci., 11(3):438-442 (2008).

[11]Moshaf S., Hamidi-Esfahani Z., Azizi M.H., Statistical Optimization of Xanthan Gum Production and Influence of Airflow Rates in Lab-Scale Fermentor, Appl. Food Biotechnol., 1(1):17-24 (2014).

[13] Yousefi N., Pazouki M., Alikhani H.F., Alizadeh M., Statistical Evaluation of the Pertinent Parameters in Bio-synthesis of Ag/MWf-CNT Composites Using Plackett-Burman Design and Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), 35(2):51-62 (2016).

[14] Krishna-Ganduri V.S.R., Unstructured Modeling of Aureobasidium Pullulans Fermentation for Pullulan Production Mathematical Approach, Int. J. Eng. Res. Appl., 3:1076-1079 (2014).

[15] Wang X., Xu P., Yuan Y., Liu C., Zhang D., Modeling for Gellan Gum Production by Sphingomonas Paucimobilis ATCC 31461 in a Simplified Medium, Appl. Environ. Microbiol., 72(5):3367-3374 (2006).

[17]Nakajima S., Funahashi H., Yoshida T., Xanthan Gum Production in A Fermentor with Twin Impellers, J. Fermen. Bioengineer., 70(6):392-397 (1990).

[18]Souw P., Demain A.L., Nutritional Studies on Xanthan Production by Xanthomonas Campestris NRRL B-1459, Appl. Environ. Microbiol., 37:1186-1192 (1979).

[19] Serrano-Carren L., Corona R.M., Snchez A., Galindo E., Prediction of Xanthan Fermentation Development by A Model Linking Kinetics, Power Drawn and Mixing, Process. Biochem., 33:133-146 (1998).

[20] Lopez M.J., Moreno J., Ramos-Cormenzana A., Xanthomonas Campestris Strain Selection for Xanthan Production from Olive Mill Wastewaters, Water. Res., 35:1828-1830 (2001).

[21] Papagianni M., Psomas S.K., Batsilas L., Paras S.V., Kyriakidis A., Liakopoulou-Kyriakides M., Xanthan Production by Xanthomonas Campestris in Batch Cultures, Process. Biochem., 37:73-80 (2001).

[22] Moreno J., Lo´pez C., Vargas-Garcı´ M.J., Va´zquez R., Use of Agricultural Wastes for Xanthan Production by Xanthomonas Campestris, J. Ind. Microbiol. Biot., 21:242-246 (1998).

[23] Mason R., Gunst F., Hess L., "Statistical Design and Analysis of Experiments with Application to Engineering and Science",2nd ed., John Wiley and Sons, Canada (2003).

[24] Montgomery D.C.," Design and Analysis of Experiments", 8th ed., John Wiley and Sons, New York (2013).

[25] Haaland P.D., "Experimental Design in Biotechnology", Marcel Dekker, New York (1989).

[27] Isar J., Agarwal L., Saran S., Saxena R.K., A Statistical Method for Enhancing the Production of Succinic Acid from Escherichia Coli under Anaerobic Conditions, Bioresour. Technol., 97:1443-1448 (2006).

[28]  Aghaie E., Pazouki M., Hosseini M.R., Ranjbar M., Ghavipanjeh F., Response Surface Methodology (RSM) Aanalysis of Organic Acid Production for Kaolin Beneficiation by Aspergillus Niger, Chem. Eng. J., 147:245-251 (2009).

[29] Peters H.U., Herbst H., Hesselink P.G.M., Lunsdorf H., Schumpe A., Deckwer W.D., The Influence of Agitation Rate on Xanthan Production by Xanthomonas Campestris, Biotechnol. Bioeng., 34:1393-1397 (1989).

[30] Amanullah A., Serrano L.C., Castro B., Galindo E., Nienow A.W., The Influence of Impeller Type in Pilot Scale Xanthan Fermentations, Biotechnol. Bioeng., 57(1):95-108 (1998). 

[31] Garcia F.O, Gomez E., Mass Transfer Coefficient in Stirred Reactors for Xanthan Gum Solutions, J. Biochem. Eng., 1:1-10 (1998).

[32] Sanchez A., Martinez A., Torres L., Galindo E., Power Consumption of Three Impeller Combinations in Mixing Xanthan Fermentation Broths, Process. Biochem., 27:351-365 (1992).

[33] Kalogiannis S., Iakovidou G., Maria L.K., Kyriakidis D.A., Skaracis G.N., Optimization of Xanthan Gum Production by Xanthomonas Campestris Grown in Molasses, Process. Biochem., 39:1-8 (2003).

[34] Shu C.H., Yang S.T., Kinetics and Modeling of Temperature Effects on Batch Xanthan Gum Fermentation, Biotechnol. Bioeng., 37:567-574 (1991).

[35] Box G.E.P., Hunter W.G., Hunter J.S., "Statistics for Experimenters", John Wiley and Sons, New York (2005).

[36] Roseiro J.C., Costa D.C., Collaco M.T.A., Batch and Fed-Batch Cultivation of Xanthomonas Campestris in Carob Extracts, LWT-Food Sci. Technol., 25:289-293 (1992).

[37] Green M., Shelef G., Bilanovic D., The Effect of Various Citrus Waste Fractions on Xanthan Fermentation, Chem. Eng. J., 56:37-41 (1994).

[38] Fernandez-Silva  M., Fornari R.C.G., Mazutti M.A., De-Olivera D., Ferreira-Padhila F., Jose-Cichoski A., Production and Characterization of Xantham Gum by Xanthomonas Campestris Using Cheese Whey as Sole Carbon Source, J. Food Eng., 90:119-123 (2009).

[39] Gils P.S., Ray D., Sahoo P.K., Characteristics of Xanthan Gum-Based Biodegradable Superporous Hydrogen, Int. J. Biol. Macromol., 45: 364-371 (2009).