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ABSTRACT: The DNA microarray is an important technique that allows researchers to analyze 

many gene expression data in parallel. Although the data can be more significant if they come out 

of separate experiments, one of the most challenging phases in the microarray context is  

the integration of separate expression level datasets that have gathered through different techniques. 

In this paper, we present a general novel method for the integration of any collected data whose 

distributions have been linearly transformed. The new method is based on the information theory 

concepts. More than that, this article presents a new approach for checking of the linearity between 

two distributions as a validation technique. The validation technique assists in taking the feature 

reduction process in effect prior to the integration phase. The time complexity of the proposed 

algorithm is low and the new presented methods show good functionality. The experimental results 

are presented at the end of the paper. 

 

 

KEY  WORDS: Microarray, Microarray integration, Information theory, Feature reduction, 

Classification. 

 

 

INTRODUCTION 

Expression levels of thousands of genes can be examined  

in parallel by using the DNA microarray technology.  

This powerful technology was first introduced in 1999 by 

Patrick Brown & Vishwanath Lyer. This technique allows 

scientists to perform many hybridization processes 

simultaneously in a single chip [1]. It has been prooved 

 

 

 

that the collected data can help scientists in discriminating 

tumors and normal-cells [2]. Nowadays, it has  

commonly used to finding genomic deviations in many 

diseases such as different cancers, hepatitis, and etc [3,4]. 

Furthermore, it has a great potential for gene-therapy in a 

near future. 
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But as a drawback, microarray experiments are 

expensive, and performed over few numbers of individual 

samples by different labs. Consequently, differences  

in results are something in common between these 

separate datasets [5]. 

In contrast to few samples, microarray experiments 

create a lot of data around the gene expression.  

Each sample contains a huge number of genes whose 

expression levels are described by a microarray experiment  

in parallel. Each expression level of a gene can be seen  

as a feature, while a sample is imagined as a feature 

vector in the sense of classification task. We use these 

terminologies interchangeably throughout this context. 

Obviously, many genes are noise ones in a specific 

classification task, due to this fact that not all of them 

take a part or equal part in the classification process of  

a particular genomic deviation. Omitting a noise gene, 

reduces the dimensions of existing genes. Some  

well-known techniques which are used in the feature 

reduction of microarray’s data are as follow: Information 

gain [6], Neural network [7], SVM [8], and etc.  

Unfortunately, these techniques are not capable  

of recognizing and compensating any differences  

in the distribution of a feature. In other word, if some feature 

vectors are transformed, some techniques can only 

investigate them as the irregular cases and put them aside. 

These techniques can’t inversely transform these feature 

vectors to make them take a part in the whole process.  

Integration of microarray’s datasets tries to create  

a larger and consistent dataset out of some datasets which 

are gathered via dissimilar techniques by some different 

labs. Although, the samples in the labs are not alike,  

the distribution of gene expressions is expected to be 

similar for a specific classification task. But, as the labs 

use some different techniques and setups, dissimilarity 

can be seen in the distribution of the gene expressions 

inside their datasets. So, the integration of gene 

expression data in different microarray’s datasets is not 

something trivial. 

This paper outlines a general method for validating 

the features and integrating the samples. Invalid features 

whose distribution is disturbed by a non-linear 

transformation will be omitted. So, the feature vector 

will be robustly reduced and ready for the integration. 

These validations will be used not only as a robust criterion 

for omitting the noise genes, but also make the integration 

process easier. The Integration method will be applied  

at the next step on the genes remained whose distributions 

are linearly transformed and can be seen as an inverse 

transform. These three methods for validating, omitting, 

and integrating the features are well discussed in  

this paper by maneuvering information theory concepts and 

its mathematics. 

The organization of this article is as follow: in the two 

following section we will review the related work.  

In the third one and in its subsections, we will present our 

newly proposed method and its background mathematics. 

The fourth section will illustrate the algorithm of  

our novel integration method. The experimental results and 

conclusion will be presented at the end of this paper. 

 
SOME RELATED WORKS ON MICROARRAY 

DATA INTEGRATION 

It is possible to do the integration via normalizing  

the data from each individual research to obtain a common 

ground. The normalization is performed on the most 

prominent set of genes. While z-score is commonly used 

as normalization approach by the papers, differences  

in the proposed methods are usually in the gene selection part. 

As examples of this approach, Lai et al. [9] use  

a special statistical test of differential expression for each 

gene to obtain a list of test scores. Whereas, Jiang et al. [10] 

are looking for marker genes after a gene shaving 

method, based on random forests. Yoon et al. [11] found 

a subset of genes that has showed high expression values 

on a specific class and low expression values on the other 

by the means of informative gain called ‘informative genes’.  

Another method for the integration is modeling.  

In this approach we are trying to formalize the reality 

inside a model. Any subsequent action for the integration 

takes place based on the models. The correlation 

signature by Kang et al. [12] is one of them. In this 

method first a gene signature vector is created for each 

dataset showing the patterns of corresponding landmark 

genes on that dataset. By organizing the patterns in  

a cubic shape, one can integrate the landmark genes of 

datasets. Another modeling approach is Meta-analyze [2]. 

It is done by obtaining an effective size by examining 

some models. These methods are based on the probability 

model building. It seems that both methods suffer from 

high complexity and time cost. 
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Fig 1: D1, D2 are two different gene expression datasets that have gathered for a specific field of study but  

by two different settings or techniques. Each column sxyz represents a different sample while subscripts x, y, and z  

show the dataset index, class index, and number of samples correspondingly. Rows are genes. 

 

In addition to the above researches, there are lots of 

papers about the integration of separate microarray 

studies such as [13-18], these researches more or less, can be 

categorized as normalization or model building methods. 

 

PROPOSED METHODS 

The current paper presents an approach based on  

the information theory model building. To describe the method, 

some terminologies are needed to be explained first. 

Suppose that two separate experiments were done in  

a same discipline like prostate cancer. But they were performed 

in two different settings or even with different techniques, 

and each of which led to separate gene expression 

datasets D1, and D2. They can be visualized as Fig. 1. 

Each row represents a gene and each column shows  

a sample. There are two classes in each dataset: 

Cl1=Normal, Cl2=Tumor. The m value is the number of 

samples in the class Cl1, and n is the number of samples 

in the class Cl2 from D1, while m' and n' are the numbers 

of samples in the related classes from D2, respectively. 

The total number of samples in D1 is M = m + n, and  

M' = m' + n' is the total number of samples in D2. N is  

the number of total genes per sample in the datasets  

D1 and D2. The rows gl and gk show the gene expression 

values in D1 while g'l and g'k show expression values of 

the same genes in D2. 

As, there isn't any presumptions about the equality of 

noise patterns and settings between two experiments,  

the equality between probability distribution of any desired 

gene gl from the first experiment and its related gene g'l  

in the second dataset can't be held even in one class. 

Particularly, in the case of different standards such as 

oligo chips for one gene expression dataset and cDNA 

chip for the other, heterogeneous datasets will be achieved 

which makes the direct comparison impossible. In this case 

normalization techniques are very likely to lead to 

misclassifications. 

From here on, gl, gk, g'l, and g'k will be assumed as the 

random variables and we will denote them by X, Y, X' 

and Y' respectively. And these random variables can get 

different values from their distributions. The D1 will be 

supposed as the base dataset, and remains intact. 

 

Background theory 

In this subsection we try to prove the following 

theorem using appendix A. 

Theorem1: A similar linear transformation over any 

two probability distribution of the random variables X 

and Y (i.e. X' = S.X + c and Y' = s.Y + c), leaves  

the mutual information intact. 

Proof: From information theory concepts [19] mutual 

information can be defined as: 

I(X ';Y ') H(X ') H(X ' | Y ')= −                                        (1) 

Using above equation and lemma1 and lemma2 from 

appendix A, we can rewrite it as follow: 

[ ]I(X ';Y ') H(X) log(s) H(X | Y) log(s)= + − − =             (2) 

H(X) H(X | Y) I(X;Y)− =  

g1 
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Fig. 2: The Probability Distribution Functions (PDF) of both X and Y are transformed to X', Y' by a desired T.  

T is described by two quantities s (scaling factor) and c (translation factor) as T(x)=s.x +c. I(X;Y)and I(X';Y')  

are mutual information between X, Y, and X', Y', respectively. 

 

Due to the Eq. (2), it is proved that the mutual 

information between any two random variables remains 

intact while a similar linear transformation occurs on 

their distributions. 

 

Proposed validity testing method 

As it was said earlier, different labs use different 

techniques and setups. So, dissimilarity can be seen  

in the distribution of the gene expressions inside their 

datasets.  Suppose that the distribution of X' is different 

from X, based on an occurred transformation T; and T is  

a direct outcome of the different techniques and settings 

between D1 and D2. In other word, as a result of the 

desired transformation T, the same gene has got different 

distributions in its expression level between D1 and D2. 

Fig. 2 shows the idea schematically. 

Theorem1 proves that  mutual information between 

any two desired genes' distributions remain intact through 

different acquisition techniques while any two given 

genes’ expression distributions have been linearly 

transformed in a similar manner. In other word, if T is  

a linear transformation and if it takes effect on the 

distributions of X, Y to create distributions of X', Y',  

the mutual information between X, Y and X', Y'  

will be remained intact (Fig. 2). More than that,  

we can generalize Eq. 2 to any number of linear 

transformations. Unfortunately, if mutual information is  
 

intact, T can be linear or non-linear. But according to 

mathematic formula, a non-linear transformation deforms 

shapes. So, we are able to implicate in this way: if the mutual 

information is intact and the shape of the distribution  

is not deformed, T will be linear. But, as the 

computational load of shape checking is not something 

trivial, and both of X and X' are expressions for the same 

gene in a specific domain of study e.g. prostate cancer,  

it is supposed that T will be linear if the mutual 

information is intact. 

Now, we are able to use Eq. (2) as a tool for identifying 

the transformation types between the genes of datasets. 

Finding any pairs of genes that have linearly transformed 

helps us to separate genes into two categories: linearly 

transformed, and non-linearly transformed. It could be done 

by comparing I(X, Y) any two desired genes from D1, 

and I(X', Y') for their corresponding transformed  

genes in D2. Our validating test process is based on 

finding of those genes which are linearly transformed.  

If there are two desired genes X, Y within D1 and their 

transformed genes X', Y' within D2, it could be said that 

they are linearly transformed as the followings: 

1 2X,Y D ,X ',Y ' D , I(X;Y) I(X ';Y ')∃ ∈ ∈ = →              (3) 

( ) ( )1 Xk YI I X;Y I X ;Y 0= = ′ ′∆ = − = →  

X sX c, Y sY c′ ′= + = +  

X   P.D.F X'   P.D.F 

X' = s.X+c 

Y   P.D.F 
Y'   P.D.F 

Y' = s.Y+c 

H 

H / s 

a     b 

f       g 

s.a+c s.b+c 

L 

L / s 

s.f+c s.g+c 

I(X;Y) = I(X';Y') 
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We call this kind of genes comparable genes.  

The comparable genes are the ones that are linearly 

transformed. The value of �Ilk represents the difference 

between mutual information of two genes l and k from 

base dataset D1 and mutual information of their corresponding 

transformed genes within D2. The comparable genes have 

�Ilk=0. Eq. 3 could be rewritten for a single gene as: 

1 2X D ,X ' D , I(X;X)∀ ∈ ∈ =                                           (4) 

H(X), I(X ';X ') H(X ')= →  

l Xk XI log(s) X ' sX c= =∆ = → = +  

In contrast, incomparability for each pair of different 

genes can be defined as: 

1X, Y;X,Y D ; X', Y';∃ ∀ ∈ ∃ ∀                                         (5) 

2X ',Y ' D , I(X;Y) I(X ';Y ')∈ ≠  

Eq. 5 can be used as a robust criterion for omitting 

noise genes. This equation simply expresses: if there isn't 

any Y and Y' for a specific X and X' that satisfies Eq. (2), 

it will be induced that X and X' are not linearly 

transformed. This means that X, and X' can be omitted 

and ignored. Due to this fact that the gene compared with 

all other existing ones is not transformed linearly, and  

it is disturbed, current expression values of D1, D2 around 

this gene is not valid. 

Practically, there are lots of noise sources, and there are 

few samples compared with the number of genes. Hence, 

using the above exact equations, few or no linear 

transformed genes can be reported by the Eqs. (3), (4), 

and (5). So, it is reasonable to compare two datasets, based on 

these equations somehow not crisply. For example, 

majority testing for the lowest or highest, putting some 

threshold, or even establishing of some fuzzy relations 

instead of the above crisp equations can be used. In this 

way, we are able to report those genes which are linearly 

transformed or near to it. We use simple threshold policy 

in our experiments that is explained in the last section. 

 
Proposed integration method 

If the comparable genes are held only in D1 and D2, 

they can be easily integrated. As D1 is the base dataset, 

the integration can be obtained by inverse transformation 

over D2. Understanding this, the important job is to find 

the scale s, and the translation factor c. This subsection 

determines equations to help us in this way. 

By equations 4 and A-4, scaling factor can be 

calculated. The following formula is obtained by  

the equation A-4: 

( ) ( )H(X') H(X) log s s exp( H(X') H(X)− = → = −      (6) 

The quantities of H(X), H(X') are entropies of X, and 

X' correspondingly. This equation demonstrates  

the relationship between scaling factor s with the entropy 

values of a same gene in both datasets D1 and D2. 

The translation value c can be found by checking the 

same gene expression distributions between two data sets 

D1 and D2. Suppose that D1 is the reference dataset, and 

D2 contains those samples that should be modified in  

a way integratable with samples in D1.  Finding it,  

the expected value of X in D1 and X' in D2, c could be 

obtained. The following equation shows relationship between 

the expected values of the expression distributions and 

the scaling s with translation factor c. 

{ } { }c X' s X= Ε − Ε                                                         (7) 

Two quantities E{X}, E{X'} are the expected values 

of X, and X' respectively. The values s and c represent 

scaling and translation factors. 

Using s (s≠0) and c, the expression values of X' from 

D2 can be integrated with D1 as: 

~ X ' c
X

s

−
=                                                                       (8) 

The value X' is a gene expression value in D2, X�   

is modified gene expression values inversely transformed 

to integrate with the same gene expression in D1. 

As not the whole of genes can exactly be transformed 

with same s and c as other ones in the practice, there will 

be vectors for scaling and translation: 

{ } { }i is s ,1 i N ,c c ,1 i N∈ ≤ ≤ ∈ ≤ ≤                                (9) 

If the values of si are similar and close to each other, 

their average can be used instead of different si for each 

gene. The same story stands for ci. But if the time of 

process isn't too much important, it would be better  

to work with each si , ci separately. 

 

ALGORITHM 

Our method is expressed in algorithm 1. Based on 

algorithm the first �Ilk, is calculated for all genes using 
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Algorithm 1: The Proposed algorithm for integrating of 

microarray expression data. 

      1) Calculate �I from samples of one class. 

      2) Create V by row summation of �I. 

      3) Calculate T. 

      4) Omit genes lower than T. 

      5) Calculate s and c for each remained gene. 

      6) Inverse Translation for each gene. 

      7) Adding Inverted samples to reference dataset. 

 

Eq. 3 and 4. The indexes l and k represent any two 

desired genes. Calculating �Ilk results in forming 

symmetric matrix as: 

{ }lkI I ,1 l N,1 k N∆ = ∆ ≤ ≤ ≤ ≤ =                                 (10) 

1 12 1N

21 2 2N

N1 N2 N N N

log(s ) I I

I log(s ) I

I I log(s )
×

∆ ∆� �
� �

∆ ∆� �
� �
� �

∆ ∆� �

�

�

� � � �

�

 

The value of �Ilk is defined as an absolute difference 

between mutual information by Eq. (3), so �Ilk=�Ikl 

which is a symmetric matrix. The diagonal value of i-th 

gene is equal to log(si) calculated by Eq. (4). If the value 

of �Ilk in any other locations except those in the diagonal 

is zero, the l-th and k-th genes are linearly transformed 

between D1 and D2 with the same s and c. If a value  

in diagonal is zero, the corresponding gene is not scaled.  

In the best case it is a hope to see a zero matrix, meaning 

X, X' have identical distributions and no transformation 

has taken effect. As the calculations in this phase takes 

place for all combination of two genes, it has quadric 

complexity O(N
2
) regarding  N genes. 

As it was mentioned earlier, the Eq. (5) describes  

a gene which should be omitted. Based on this equation, 

if the l-th gene has ∆Ilk ≠ 0 for all other genes, the l-th gene 

shall be omitted. In the matrix of Eq. (10),  

this can be interpreted as the omittion of those rows that 

have non-zero values. The more non-zero values the l-th 

row of the matrix has, the more non-linear characteristics 

the l-th gene shows. And as the values of �Ilk are  

non-negative, so the greater summation the l-th row  

of the matrix has, the more non-linear specifications 

the l-th gene illustrates. 

The merit of a gene omitted is described by the simple 

threshold in this research. To calculate the threshold 

value T, the algorithm performs steps 2, 3 and 4. The 

second step is about the creation of vector V by �I 

summation in the rows, which is done with the 

complexity of O(N). 

N

i i ij

j 1

V v ,(1 i N)v I
=

� �	 	
= ≤ ≤ = ∆
 �
	 	� 


�                                  (11) 

The third step finds those genes that have vi with 

greater values than T, and the fourth step omits them.  

The threshold value T is calculated by Eq. (12).  

This equation shows that the one- tenth of the greatest row 

summation is used as the threshold value in this research. 

The one tenth is the threshold percentage which  

was chosen by experiments. 

{ }iT=0.1  Max v ;1 i N× ≤ ≤                                          (12) 

In the fifth step, the values s and c are calculated for 

the remaining genes by the Eqs. (6) and (7). To find s, an 

exponential function effects on the diagonal values of �I 

matrix. Based on the calculated s and Eq. (7),  

the translation factor c is calculated. 

 Step six deals with finding the inverse transformed 

expression values for the genes by the Eq. (8), and the step 

seven ends the process by merging the newly calculated 

values with corresponding genes in D1. 

The complexity of phases between 3 and 7, aren't 

greater than O(N). It makes that the overall complexity of 

the algorithm will be limited in quadric O(N
2
) that  

is suitable in sense of the time to be spent. 

 
EXPERIMENTAL  RESULTS 

Our experiments fall into two categories: a) finding 

the threshold percentage, b) performing the whole algorithm 

on some real datasets. 

 
Finding the threshold percentage 

A Random reference dataset D1 was created with  

10 features (i.e. genes) whose distributions were selected 

to be uniform PDF with different mean µ and standard 

deviation σ. The µ and σ were selected equal to the index 

of each gene. Creating the modified dataset D2, the initial 

PDF of each gene from the reference dataset linearly  

is transformed by different s, c. Hence, transformed PDF 

was sampled to create D2. The s and c were selected 
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Fig. 3: The results of proposed algorithm in order to find 

scaling factor (s). Horizontal axis determines the gene number 

in datasets. Vertical axis shows discovered scaling factor(s). 

Real effected scaling factors(s) are illustrated by red dashed 

lined. The other line types and their marks show the 

discovered (s) which were calculated by different dataset’s 

number of samples (m). The examined values of m are m=25, 

250, and 2500.  Each marked point on the discovered values 

(s) is the average of ten independent runs. 

 

equal to the index of each gene. The number of samples 

in D1, D2 which is denoted by m, was equal. 

As an example, the fourth feature g4 in D1 was created 

by sampling a uniform PDF with µ=4 and σ=4 that 

means g4 ~ (a= -2.9282, b = +10.9282). The distribution 

of g'4 in D2 was calculated by a linear transformation  

on the PDF of the g4. Due to the scaling and translation  

s = c = 4, the g'4 had µ=20 and �=16 or in the other word
 

4g ' ~(a -7.7128,b 47.7128)= = + . 

In order to discover the threshold percentage, the D1, D2 

were fed into the software which was implemented to find 

the s, c without any threshold value. The software  

was implemented only based on steps 1 and 5 of the 

algorithm. The procedure of sampling D1, D2 and looking 

for s, c was performed ten times for each dataset’s 

number of samples m and  examined by different values 

m=25, 250, and 2500. 

The discovered results of s and c can be seen  

in Fig. 3, 4 respectively. The horizontal axis shows  

the corresponding gene number and the vertical axis 

represents the corresponding studied values which are  

the scaling factor s in Fig. 3 and the translation values c 

in Fig. 4. The discovered values of s and c in Figs. 3 and 4 

are the average of ten independent runs of the algorithm. 

The Figs. 3 and 4 show some facts. The greater value 

in the scaling factor s and the translation factor c the gene 

is affected by, the more deviation in finding the correct 

values the algorithm has. The deviation can be reduced 

by increasing the dataset’s number of samples m. 

Although, increasing in m makes the discovered 

values s and c close to the actual values, the number of 

samples in a real dataset, is fixed and not more than  

250 samples. If the relations between the valid values of s, c m 

are created, the greatest one will be 0.1(i.e. s=2/m=25).  

It means that we are mostly sure about the deviation 

beyond this range. In other word, this technique  

is capable of discovering valid s and c whose values  

are less than a tenth of the number of samples. 

 

Integration on real datasets 

In order to perform the algorithm to do the integration 

on the real datasets, the prostate cancer microarray 

datasets which are publicly available were used. These 

datasets have been presented in some highly valuable 

papers. For simplicity, each dataset is represented by  

the abbreviation of the first author of the paper, such as 

Singh [3], and Welsh [20]. The platform of these datasets 

is Affymatrix HG-95AV2. Table 1 shows the data-sets’ 

specifications in brief. 

As it is shown, the datasets aren’t equal in their number  

of genes; so before presenting these datasets within  

the algorithm, a preparation step is needed in order to balance 

them. The input datasets and integrated dataset, which  

is the output of the algorithm, are classified in order to 

discover the robustness of the algorithm in omitting the 

noise genes. 

Our classification approach for the evaluation is SVM [21] 

with linear kernel. Despite its complication in adjusting 

the proper parameters, SVM which works based on 

machine learning, is a powerful tool not only in the 

classification tasks but also in the regression and other 

fields of study. As SVM is a machine learning technique, 

it is needed to be fed by some samples as the training 

cases t, and the remaining as the test ones. The Leave 

One Out Cross Validation (i.e. LOOCV) is used as  

the training and testing method. 

Giving available N samples, LOOCV uses (N-1) 

samples to build and train the classifier, while the 

remaining sample inputs are used by the classifier  

to measure its merit. This process takes place N times and
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Table 1: The data-sets’ specifications. 

Dataset Number of Probes Number Of Normal Samples Number of Tumor Samples Total Number of Samples 

Singh 12600 50 52 102 

Welsh 12626 9 24 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: The results of proposed algorithm in finding proper 

Translation value. Horizontal axis determines the gene 

number in data sets vertical axis shows effected Translation 

values to PDF. Real Translation values are illustrated by 

dashed lined. For example 4th gene has effected by c = 4. 

The algorithm has found c = 4.2741. 

 

the average of the measured criteria are reported after 

each time. The evaluated criteria are accuracy, sensitivity, 

and specificity defined as: 

 
Accuracy =                                                                       (13) 

 
 

Sensitivity =                                                                      (14) 

 

 

 

Sensitivity =                                                                      (15) 

 
 

The behavior of the algorithm with different threshold 

values is shown in Fig. 5. It can be seen that increasing 

the threshold value up to 0.1 makes the predictive 

accuracy better. Due to the few numbers of samples, 

threshold values greater than 0.1 make the result worse.  

Deviation and reduction in predictive accuracy is performed 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: The results of proposed algorithm with different 

threshold values. The vertical axis shows the predictive 

accuracy, sensitivity, and specificity which are a number 

between 0 and 1. The horizontal axis is threshold values.  

Each point is reported by LOOCV. 

 

 

based on what has been presented previously. If the 

integration algorithm is performed without any reduction 

in genes (T=1), SVM will classify the sample with best 

predictive accuracy. 

The SVM performance over Singh, Welsh, and the 

integrated dataset (Singh+Welsh) which is the output of 

the new integration algorithm without any threshold for 

reduction, are illustrated in Fig. 6. It shows that the 

integrated dataset is classified by SVM with highest 

predictive accuracy and specificity. And the sensitivity is 

0.8571 that is less than the others.  

Generally speaking, the integrated dataset is classified 

better than the others. The two out of three evaluated 

criteria are satisfied by the proposed integration 

algorithm. Although, its sensitivity is less than the  

other, but the most important factor in comparison of 

different methods is predictive accuracy which  

is satisfied by proposed integration method. It is due  

to this fact that the algorithm integrating separate  

datasets creates more relevant samples than any single 

dataset. 
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Fig. 6: It shows the classification results over Singh, Welsh, 

and integrated dataset. The integrated dataset is created by the 

algorithm without any threshold value. Each result is reported 

by LOOCV. The vertical axis shows the predictive accuracy, 

sensitivity and specificity which are between 0 and 1. 
 

CONCLUSIONS 

We have presented a new integration method and  

a validation technique by means of information theory 

concepts. The method is general for integration of any 

kind of data whose distributions have been linearly 

transformed. The validation method is for checking  

the linearity between two distributions, as the integration 

method can only cope with linear transformations. 

Additionally, this article presents new heuristic feature 

reduction method. The method omits those genes which 

are not linearly transformed. These methods have been 

applied in DNA microarray as a special case of their 

usages. The time complexity of proposed algorithm is  

in quadric order that is something suitable for practical usages.  
 

APPENDIX A 

This assumption will not decrease from the generality 

of further topics due to this fact that, the number of 

possible values for each random variable can be increased 

toward infinite and integral notations can be used instead 

of sigma form, or one can discreteize these random 

variables first. 

Upon these, we will use some terminology as follow: 

p(X) and p(Y) are probability mass functions of gl and gk 

in D1. And p(X') and p(Y') are probability mass functions 

of g'l, g'k in D2, and p(X,Y) is joint probability mass 

function of gl, gk and so on. p(xi) is probability of  

a specific event xi out of an events' list that is related to 

random variable X and l is number of these events. p(yj) 

and p(xi,yj) are similarly defined, m is possible number of yj. 

Suppose a given gene as a discrete random variable X 

that can get different possible values {x1,..,xl} and c,s∈ℜ, 

are scaling and translation factors that scale and  

transform a given gene's expression distribution uniformly 

between D1 and D2. Thus it can be written as follow:  

i i 1 l0 p(x ) 1, x X {x ,..., x },≤ ≤ ∈ ≡                              (A-1) 

l
X' sX c

i

i 1

p(x ) 1
= +

=

= →�  

i i 1 sl0 p(x ') 1, x ' X ' {x ',..., x '},≤ ≤ ∈ ≡  

sl c
i

i i

i 1 c

p(x )
p(x ') 1 p(x ')

s

+

= +

= → =�  

j j 1 m0 p(y ) 1, y Y {y ,..., y },≤ ≤ ∈ ≡                             (A-2) 

m
Y' sY c

j

j 1

p(y ) 1
= +

=

= →�  

j j 1 sm0 p(y ) 1, y Y ' {y ',..., y '},≤ ≤ ∈ ≡  

sm c
j

j j

j 1 c

p(y )
p(y ') 1 p(y ')

s

+

= +

= → =�  

Lemma1: Linear transformation X'=sX+c over a 

random variable increases the total ambiguity equal to 

logarithm of effected scaling factor. 

Proof: Entropy of random variable X can be 

calculated upon its definition [19] and Eq. (1)  

as follow: 

l
X ' sX c

i i

i 1

H(X) p(x ) log(p(x ))
= +

=

= − →�                  (A-3) 

sl c

i i

i 1 c

H(X ') p(x ') log(p(x '))
+

= +

= −�  

Using index shifting, A-1, and A-2 we are able to 

change it as follow: 

sl

i i

i 1

H(X ') p(x ') log(p(x '))
=

= − =�                               (A-4) 

sl
i i

i 1

p(x ) p(x )
log( )

s s=

− =�  

sl sl

i 1 i 1

1
p(x) log(p(x)) p(x) log(s)
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� �
− + =� �
� �
� �  
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Example: We have a dice with six faces, the total 

ambiguity or entropy is 2.5849(bit). If a special 12 faces 

dice is designed, the entropy would be equal to 

3.5849(bit), equation A-4 is hold with the scaling factor 2.  

Lemma2: Linear transformations X'=sX+c and Y'=sY+c 

over two random variables increase the conditional 

entropy equal to logarithm of effected scaling factor. 

Proof: For conditional entropy we can write as follow: 

l m

i j i j

i 1 j 1

H(X | Y) p(x , y ) log(p(x | y ))
= =

= − =��              (A-6) 

l m
i j

i j
ji 1 j 1

p(x , y )
p(x , y ) log( )

p(y )= =

−��  

H(X ' | Y ') =
sl c sm c

i j

i j
ji 1 c j 1 c

p(x ', y ')
p(x ', y ') log( )

p(y ')

+ +

= + = +

−� �  

For joint probability we have the following relationship: 

i i j jX' sX c,Y ' sY c,x X,x ' X ',y Y,y ' Y'

i jp(x , y )
= + = + ∈ ∈ ∈ ∈

→       (A-7) 

i j

i j 2

p(x , y )
p(x ', y ')

s
=  

From joint entropy definition we have: 

H(X,Y) H(Y) H(X | Y)= + =                                    (A-8) 

l m

i j i j

i 1 j 1

p(x , y ) log(p(x , y ))
= =

��  

Based on the above equations A-2, A-6, A-7, and 

using index shifting it could be written: 

sl sm
i j i j

2
ji 1 j 1

p(x , y ) p(x , y )
H(X ' | Y ') log( )

s s.p(y )= =

= − =��          (A-9) 
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2 2 2
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