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ABSTRACT: Fluid Catalytic Cracking (FCC) process is a vital unit to produce gasoline. In this research, 

a feed forward ANN model was developed and trained with industrial data to investigate  

the effect of operating variables containing reactor temperature feed flow rate, the temperature of 

the top of the main column and the temperature of the bottom of the debutanizer tower on quality 

and quantity of gasoline, LPG flow rate and process conversion. Eventually, validated ANN model 

and firefly algorithm which is an evolutionary optimization algorithm were applied to optimize the 

operating conditions. Three different optimization cases including maximization of RON (as the 

parameter which demonstrates the quality of the gasoline), gasoline flow rate and conversion  

were investigated. In order to obtain the maximum level of targeted output variables, inlet reactor 

temperature, temperature of the top of the main column, temperature of the bottom of debutanizer 

column and feed flow rate should respectively set at 525,138, 169ºC and 43000 bbl/day. Also, 

sensitivity analysis between the input and output variables were carried out to derive some effective rule-

of- thumb to facilitate the operation of the process under unsteady state conditions. The result introduces  

a methodology to compensate for the negative effect of undesirable variation in some operating variables  

by manipulating the others. 
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INTRODUCTION 

For over fifteen years, Fluid Catalytic Cracking (FCC)  

has been one of the main petroleum refining processes  

to produce gasoline. This is designed to process a wide 

range of feed stock including straight run distillates,  

 

 

 

atmospheric and vacuum residue and VGO (vacuum 

Gasoil).Riser-reactor and regenerator are the two main 

equipment of the process. The oily feed is vaporized and 

cracks to lighter products as it moves up and contacted  
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with hot powdered re-circulating catalyst in the riser-

reactor. The deactivated coked catalyst is sent to  

the regenerator to burn off the coke and reactivate.  

Same as other chemical processes like catalytic reforming 

process [1], isomerization [2], hydrodesulfurization [3] and 

thermal cracking [4], modeling and simulation are directly 

utilized to monitor the performance, optimize and control of 

the FCC process [5-12, 23-26]. The applied model contains 

rigorous models and black box models. Rigorous models  

are majorly based on kinetic models with different lumps and 

developed to estimate the effect of different designing or 

operating variables on conversion or control the FCC process 

[5-11]. Also, it is used to optimize the quality of produced 

gasoline [12]. Moreover, like several chemical phenomena 

and chemical processes [13-24] black box modeling such as 

Artificial Neural Network (ANN), Fuzzy logic and Adaptive 

neuro-fuzzy inference system is applied in the field of FCC 

processes [25, 26]. Also, different evolutionary algorithms 

[27, 28] were applied to optimize the process.  

In this research, to investigate the productivity of the 

FCC process and the impact of operating conditions,  

a black box model based on ANN (Artificial Neural 

Network) is applied. This facilitates analysis of the effect 

of operating conditions on the quality and quantity of 

produced gasoline. Moreover, to determine optimum 

operating conditions for improvement of quality and 

quantity of gasoline (RON and gasoline flow rate),  

the adapted developed model together with firefly algorithm 

(as an evolutionary optimization method) is utilized.  

The results will demonstrate the ability of the selected 

optimization algorithm to determine suitable operating 

conditions. Moreover, the results will apply to figure out 

certain rules to weaken the negative effects of the variation 

of operating variables in unsteady state conditions.   

 

THEORITICAL SECTION  

Specification of the FCC process 

The feedstock of the process is Vacuum GasOil (VGO) 

with the characterization demonstrated in Table. 1. Before 

feeding to the process; it is preheated to 232ºC to improve 

the conversion of the process. Then it is injected to the riser-

reactor in which the feed is vaporized due to the close 

proximity to the hot catalyst. The catalyst cracking 

exothermic reactions have occurred in the effective volume 

of riser-reactor while the catalyst over oil ratio is between 4 

and 9. 

Table 1: The characterization of FCC feedstock. 

Sp.Gr@ 60ºF 0.906 

IBP 290ºC 

10% 307ºC 

30% 355ºC 

70% 440ºC 

FBP 570ºC 

Carbon Conradson,wt% 0.7% 

 

In addition to main products, the coke is also 

produced and formed on the catalyst. It is later removed  

by burning in the regenerator. Indeed, after the riser- 

reactor the catalyst and product mixture are separated 

in cyclones. The products are sent to separation section 

of the process and the catalyst is sent to the 

regenerator to reactivate and coke removal.  

The selected FCC process is licensed by UOP.  

This unit processes 45000 bbl VGO to produce LPG, 

HCO, LCO and maximum four million liters per day 

gasoline. Specification of the catalyst which is used in 

this process is illustrated in Table 2. 

 

Field Data 

Main process variables including Feed temperature, 

Recycled catalyst flow rate, Feed flow rate, Riser-reactor 

temperature, feed to catalyst ratio, Temperature of the 

Top of Main Column (TTMC) and Bottom of 

Debutanizer column(TBDC), Pressure of main and 

deButanizer column are the key variables of this process. 

Based on the licensor instructions, Feed temperature, 

Main distillation column, Debutanizer, and reactor 

pressure are respectively set in 232ºC, 0.7 barg, 10.4 barg 

and 1.2 barg. Also, several variables the same as the 

catalyst to feed ratio and the recycled catalyst flow rate 

crucially depend on each other and severely affect reactor 

temperature. However, based on operating engineers’ 

experiences there are some input variables which have  

a great impact on output variables. These variables  

are feed flow rate, reactor inlet temperature, TBDC and 

TTMC which are chosen as main input variables.  

To analyze the process behavior of targeted FCC process, 

several records of industrial data were gathered during 

eighteen months and 108 records were selected as validated 

data. The upper and lower limits of chosen nput variables and 
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Table 2: Fresh FCC catalyst characteristics. 

Apparent bulk density,gr/ml 0.7-0.9 

Total Surface area,m2/gr 130-370 

Micropore surface area,m2/gr 100-250 

Mesopore Surface area,m2/gr 30-120 

Rare earth content, wt% Re2O3  

For Low micropore Surface Area 0.3-1.5 

For high micropore surface area 0.8-3.5 

Alumina, wt% Al2O3 25-50 

 

the maximum and minimum observed value of output 

variables are illustrated in Table 3. 

 

Modeling methodology  

In this research, a model based on the ANN system  

is developed. This is a parallel structure made up of 

nonlinear nodes that are related to each other by fixed 

weights and variables. Since these weights are not based 

on any physical quantities, this method is known  

as a black-box model. One of the famous schemes  

of neural networks for supervised learning is the MultiLayer 

Perceptron (MLP). This is directly applied for 

classification and prediction problems. In a feed-forward 

MLP, neurons contain at least three layers of nodes 

including input, output and one or more hidden layers 

(Fig. 1). For this configuration, the information is wide 

spread in only the forward direction.  

The one hidden layer networks are the most widely used 

kind of MLP_network. In this network each node with  

in a layer is connected to all of the nodes of the previous 

layer. This node is constituted of the weighted inputs and 

a bias. The results are clarified by the following linear 

function:  

m

J ji i ji 0
A w x b


        (1) 

Wji is a weight that goes from the input (i) to the 

hidden neuron (j); b is the bias to the node, and xi is the 

input unit of the neuron. By applying a function (f), the 

output of the neuron can be written as follow:  

 i jZ f a       (2) 

This is used to model the nonlinear behavior of the process. 

Several functions such as the tangent sigmoid, linear  

and logarithmic sigmoid functions are tested and applied 

for designing the artificial neural network. The tangent 

sigmoid function is demonstrated as following: 

 
a a

a a

e e
f a

e e









      (3) 

Moreover, the logarithmic- sigmoid function is defined 

as follow: 

 
a

1
f a

1 e



      (4) 

After construction of the structure of the ANN,  

the training procedure is performed by introducing a set of 

clarified inputs and outputs. Then, the network can learn 

the trend of these data by manipulating the weights and 

biases by using backward propagation. Hence, 

minimization of the following objective function  

as the mean square error is the key to adjusting the fitting 

parameters: 

 
2N

k,actual ki,modelk 1

1
MSE Y Y

N 
      (5) 

In which N is the total number of clarified data and k 

is the output value; actual refers to the measured outputs 

from the plant, and model refers to the values calculated 

by ANN. For better validation and analyzes of the results, 

some other statistical parameters are also used. These are 

defined as follow: 

RMSE MSE       (6) 

 

 

2N

ki,actual ki,model2 i 1

2N

ki,actual ki,modeli 1

Y Y
R 1

Y Y





 
  
  




    (7) 

By using the above parameters for evaluation of  

the designed neural network, the best and most qualified 

artificial neural network is determined. 

 

Optimization  

Optimization of operating conditions to achieve a certain 

goal is always the subject of several types of research  

in the field of a chemical process. It may include 

maximization of profit, limitation of production  

of undesirable products and optimum production  

of a strategic product. In the current work, maximization 

of RON, gasoline production flow rate and conversion 
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Table 3: Upper and lower limits of chosen input; maximum and minimum observed value of output variables. 

Operating variable Lower limit Upper limit 

Feed flow rate(bbl/day) 40000 43000 

Reactor Temperature(ºC) 519 525 

Temperature of Bottom of Debutanizer Column (TBDC) 169 184 

Temperature of Top of Main Column (TTMC) 133 139 

Output variable Minimum Value Maximum Value 

Gasoline flow rate(bpd) 20580 21824 

LPG flow rate(bpd) 8293 8720 

RON 92.85 93.9 

Conversion% 58.7 60.62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Schematic diagram of a three- layer ANN. 

 

are the three different optimization goals. Firefly algorithm 

as a methaheuristic nature-inspired algorithm is applied  

to attain the optimum operating conditions. This algorithm  

is based on the social (flashing) behavior of fireflies or 

lighting bugs in the summer sky in the tropical regions.  

It has three exact idealized rules which are based on some 

of the major flashing characteristics of real fireflies [29]. 

These are as follow: (1) all fire flies are assumed as unisex;  

the fireflies move towards more attractive and brighter 

ones regardless of their sex. (2) The amount of attraction of  

a firefly is proportional to the brightness of the fireflies.  

It decreases by increasing the firefly distance from others, 

regarding the fact that the air absorbs the light.  

However, the brightest ones move randomly. (3)  

The brightness or lighting power of a firefly is established  

by the value of the objective function of a given problem. 

To apply this algorithm a computer code that is published 

by Xin-She Yang, was utilized [29]. Following equations 

are introduced to obtain maximum RON, gasoline production 

flow rate and conversion by minimization the difference 

between the actual and maximum value of the variables: 

 

 

 

2

2

2

RON max RON
f 1

max RON

Conversion max(Conversion)
min imize f 2

max(Conversion)

gasolineflow max(gasolineflow)
f 3

max(gasolineflow)

  
  
 


 

  
 


    
 

(8) 
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  (9) 

Constraint indicates limitations of operating 

conditions which are determined based on the authentic 

process. f(1) shows the objective function to minimize the 

difference between the maximum obtainable and actual 

RON. Likewise, f(3) introduces an objective function  

to minimize the difference between the actual and maximum 

possible gasoline production flow rate. Moreover, f(2) 

indicates the minimization of the difference between  

the maximum obtainable and actual conversion. 

 

RESULTS AND DISCUSSIONS 

Industrial data were collected in the eighteen-month 

period. The different neural network was designed  

to predict the output variables. Tables 4 to 6 demonstrate  

the accuracy of different studied schemes of artificial neural 

networks. As stated above R-squared and MSE are 

effectively utilized to clarify the precision of different 

alternatives. Different alternatives are formed based on 

using logarithmic- sigmoid, linear and tangent sigmoid 

functions in hidden or output layers. Each table illustrates 

the alternatives for the artificial neural networks which 

are designed to predict the production rate of gasoline, 

LPG, the value of RON (Research octane number) of 

gasoline and conversion of the FCC process. 

Between five detected alternatives demonstrated  

in Table 4, the lowest MSE and the highest R-Squared 

belong to the network in which the tangent sigmoid and 

linear functions are respectively applied to form hidden 

and output layers. The worst alternative network for 

prediction of LPG flow rate is the one which shows a high 

value of MSE and low value of R-Squared. However,  

the best network is respectively constituted of the tangent 

sigmoid and linear functions for designing of hidden  

and output layers. Indeed, utilizing Tangent sigmoid  

and linear function in Hidden and output layers, made precise 

networks to estimate RON and conversion of the process.  

Furthermore, to determine the optimum number of 

neurons in hidden layers, different networks with 

different neurons were checked. Minimum checked 

neurons were two and the maximum neurons are nine.  

As it is shown in Table 7, seven neurons in hidden layers 

form the best neural network with minimum MSE and 

maximum R-Squared. 

The impact of operating conditions on output 

variables is clarified by utilizing the verified neural 

networks. The effect of TTMC and the TBDC on 

produced gasoline flow rate is demonstrated in Fig. 2 (a). 

It is cleared that increasing the TTMC at specified TBDC 

increases the produced gasoline flow rate. While 

increasing the TBDC at definite TTMC slightly decreases 

the gasoline flow rate. Increasing the TTMC increases  

the chance of escaping of higher boiling point components 

from the collective trays of the column. Consequently, 

these components accompany the gasoline products 

easily and will cause increasing the gasoline flow rate. 

This will increase the end boiling point of produced 

gasoline. On the other hand, increasing the TBDC will 

increase the separation of iso and normal butanes from 

gasoline. Consequently, it decreases the production rate 

of this product. Fig. 2 (a) reveals that the TTMC has a 

greater effect than TBDC on the production of gasoline.  

In fact, each 1ºC increment in TTMC is the cause of sixty 

barrel per day variation in the production rate of gasoline. 

However, 1ºC rise in TBDC would yield 18.33 barrel per 

day variation in the production rate of gasoline. 

The impacts of feed flow rate and inlet reactor 

temperature are elucidated by the exploration of Fig. 2(b). 

Raising the feed flow rate at stable inlet reactor 

temperature increases the rate of gasoline production rate. 

In the operating range, definite rising in feed flow rate 

yields the same increment in gasoline production rate. 

Moreover, the minor contribution of inlet reactor 

temperature is related to the negligible effects of rates of 

reactions on gasoline production flow rate. Indeed 6ºC 

rising in reactor temperature, which includes the total 

operating domain, would only increase the gasoline 

production flow rate by 1.6% at a low feed flow rate. 

However, the effect is decreased by increasing the feed 

flow rate.  

The interaction effects of TTMC and reactor inlet 

temperature on gasoline production rate is illustrated in 

Fig. 3. Increasing both of the variables increases  

the gasoline production rate ultimately by 7.7%. 

However, different variations in TTMC and inlet reactor 

temperature prove that the inlet reactor temperature 
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Table 4: Evaluation of different alternatives for neural network to gasoline production rate. 

Logarithmic sigmoid Linear Logarithmic sigmoid Tangent sigmoid Linear  Hidden  layer 

Linear Logarithmic sigmoid Tangent sigmoid Linear Tangent sigmoid  Output layer 

0.64 1.4 1.34 0.15 0.19 (MSE) 

0.55 0.48 0.6 0.93 0.9 (R-squared) 

 

Table 5: Evaluation of different alternativesa  for neural network to estimatethe LPG production rate. 

Logarithmic sigmoid Linear Logarithmic sigmoid Tangent sigmoid Linear  Hidden  layer 

Linear Logarithmic sigmoid Tangent sigmoid Linear Tangent sigmoid  Output layer 

1.18 0.23 1.12 0.09 0.105 (MSE) 

0.55 0.48 0.6 0.92 0.9 (R-squared) 

 

Table 6: Evaluation of different alternatives for the neural network to predict two variables. 

RON 

Logarithmic sigmoid Linear Logarithmic sigmoid Tangent sigmoid Linear Hidden  layer 

Linear Logarithmic sigmoid Tangent sigmoid Linear Tangent sigmoid Output layer 

1.41 1.39 0.74 0.2 0.54 (MSE) 

0.55 0.48 0.6 0.95 0.9 (R-squared) 

Conversion 

Logsig Purelin Logsig Tangent sigmoid Linear Hidden  layer 

Purelin Logsig Tansig Linear Tangent sigmoid Output layer 

0.87 1.35 0.31 0.22 0.25 (MSE) 

0.55 0.48 0.6 0.88 0.85 (R-squared) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: The effect of temperature of the top of the main column, the temperature of the bottom of debutanizer column, feed flow rate  

and Inlet reactor temperature on gasoline production rate. 
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Table 7: MSE and R-Squared of networks for prediction of gasoline, LPG, RON and conversion of process. 

Gasoline LPG 

Neurons MSE R Neurons MSE R 

2 1.42 0.73 2 1.42 0.73 

4 1.28 0.88 4 0.97 0.88 

5 1.25 0.94 5 1.36 0.84 

6 0.68 0.95 6 0.28 0.75 

7 0.2 0.97 7 0.22 0.92 

8 1.3 0.94 8 0.6 0.89 

9 1.282 0.92 9 1.32 0.82 

Conversion RON 

Neurons MSE R Neurons MSE R 

2 0.42 0.63 2 1.32 0.68 

4 0.35 0.82 4 1.4 0.85 

5 1.23 0.75 5 1.36 0.78 

6 1.28 0.75 6 0.28 0.83 

7 0.35 0.84 7 0.19 0.88 

8 0.56 0.72 8 0.25 0.8 

9 1.39 0.82 9 1.32 0.71 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: The effect of inlet reactor temperature and temperature of 

the top of the main column on the gasoline flow rate (bpd). 

 

has a prime effect on the gasoline flow rate in comparison 

with TTMC. 

Fig. 4, introduces the effects of input variables on 

RON. Indeed, increasing the inlet reactor temperature and 

TTMC raises the RON. However, raising or declining  

the temperature of the bottom of the debutanizer column has  

no significant effect on RON. So, the main effect belongs 

to the reactor temperature. This is rationalized by the 

direct effect of reactor temperature on the reaction network [30].  

In fact, increasing the reactor temperature increases the rate 

of all reactions including the aromatic and iso-paraffinic 

species production reactions. This boosts up the RON of 

produced gasoline. However, it will increase the rate of 

secondary reactions such as coke productions reactions. 

Primary increasing of TTMC motivates the concentration 

of light high octane number species to increase  

in gasoline. However, further increasing may raise higher 

boiling point species which have a lower octane number. 

This certainly declines the average octane number of 

gasoline. Due to small changes of the species owing  

to a variety of temperature of the top of the main column, the 

domain of variation of RON in this field is very narrow.  

By briefly exploring of Fig. 4(b), the maximum RON  

is obtained in a region with TTMC less than 137ºC and 

reactor temperature higher than 524ºC. Simultaneous 

increasing of TTMC and reactor temperature stimulates 

the RON to have an increasing trend. This also approves 

the greater impact of reactor temperature on RON.  

The effect of variation of operating conditions on the 

conversion of the process is clarified in Fig. 5. Fig. 5(a) 

illustrates that increasing the TTMC at the stable feed 
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Fig. 4: The effect of inlet reactor temperature, TTMC, and TBDC on RON. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: The effect of Feed flow rate(bbl/day), inlet reactor temperature(ºC) and TTMC(ºC) on Conversion. 

 
flow rate raises the conversion. However, based on this figure 

the feed flow rate has neutralized effects on conversion. 

Fig. 5(b) declares that high conversion of the FCC process  

is obtained while the inlet reactor temperature and TTMC 

have their high value. This is related to the decisive effect 

of reactor temperature on chemical reactions rate [30]. 

The influence of input variables on LPG production 

rate is demonstrated in Fig. 6. Raising Feed flow rate and 

inlet reactor temperature increases the LPG production 

rate. However, at the high feed flow rate, the effect of 

inlet reactor temperature is weakened. This is related to 

decreasing residence time [30]. Fig. 6(b) illustrates the 

interaction effects of TTMC and reactor inlet 

temperature. The predominant effect of reactor inlet 

temperature on LPG flow rate is related to the 

dependence of light species formation on reactor inlet 

temperature. However, increasing the TTMC causes  

to escape heavy hydrocarbon from liquid phases to LPG, 

which certainly has less impact on LPG production rate. 

This is also approved by a detailed exploration of 

contours in Fig. 5(b).  

Up until now, it has been shown that the sensitivity 

analysis presented here has facilitated in scrutinizing  

the results generated from the developed ANN model. 

Eventually, the validated model can be applied  

to investigate the optimum operating conditions. So, firefly 

algorithm is applied to minimize the objective function 

introduced by equation (1). Table 8 introduces  

the optimum operating conditions in three different cases. 

These different cases are respectively maximization  

of RON, maximization of RON and gasoline flow rate 

and maximization of RON, gasoline flow rate and conversion.    

Table 8 shows that setting the maximum value for the 

inlet reactor temperature and feed flow rate have a great 

impact on the maximization of the output variables. 

However, changing the value of TBDC and TTMC, 
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Table 8: The optimum operating conditions for three different cases. 

Record 
Objective function 

(maximization) 

Inlet Reactor 

temperature (ºC) 
TBDC(ºC) 

Feed flow 

rate(bbl/day) 

TTMC 

(ºC) 
RON 

Gasoline flow 

rate(bbl/day) 

Conversion 

(%) 

1 RON  525 171 41405 137 94.0 21188 72.2 

2 
RON and gasoline 

flow rate  
525 170 43000 133 93.9 22555 72.6 

3 
RON, gasoline flow 
rate and conversion  

525 169 43000 138 93.96 22580 72.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: The effect of Reactor inlet temperature (ºC), Feed flow rate(bbl/day) and TTMC(ºC) on LPG production(bbl/day). 
 

affects the number of maximized variables.  

For example, to maximize the values of RON, 

conversion, and gasoline flow rate, the value of TBDC 

should be set at the minimum level and the value of TTMC 

should be set at 138ºC, which is near the maximum. 

The behavior of the firefly optimization algorithm  

is illustrated in Fig. 7. The figure shows the RON and 

Gasoline production rate versus iterations of the firefly 

algorithm while it runs to approach to optimum conditions. 

As it is clearly shown the sample population diverges  

at the primary iterations. But by improving the iterations 

they converge to the maximum allowable value. It is also 

declared that after the 300th iteration all the population 

sample converged to the maximum value. The figure 

illustrates that the maximum divergence of the sample 

population is observed in the first iteration. However, rapid 

declining in the divergence is observed in the later 

iterations. In fact, by increasing the iterations the sample 

population converges to the maximum. Indeed, after the 300th 

iteration no observable changes obtained in the procedure.    

 

CONCLUSIONS 

Investigation towards FCC process optimization  

is studied by analyzing a different range of available collected 

industrial data. In this study, the selected output variables 

were respectively gasoline, LPG, LCO, Gas, and CO 

production flow rate. However, these variables depend on 

input variables. Inlet reactor temperature, feed flow rate, 

TTMC, and TBDC are recognized as the most effective 

ones. An ANN modeling system was developed and 

trained by industrial data. The results of model validation 

illustrated enough accuracy. The sensitivity analysis 

between input and output variables was carried out  

by utilizing the validated model. This was yielded in a set 

of rules to properly run the FCC process in abnormal 

situations. First of all the effects of decreasing the feed 

flow rate on gasoline flow rate can be partly compensated 

by raising the inlet reactor temperature. Indeed, one bbl 

change in feed flow rate made a variation in gasoline 

production rate about 0.6 bbl. However, 1ºC variation in 

inlet reactor temperature will make 83 bbl/day variations 

in gasoline production flow rate. Since the maximum 

allowable variation of inlet reactor temperature is 6ºC,  

the maximum compensable decline in gasoline production 

rate is 500 bbl/day. This is approximately equal to one 

third of total declining resulted by decreasing the feed 

flow rate from the maximum to minimum observable 

value in the span of operating conditions. In addition, 

RON can easily be controlled by the reactor inlet 

temperature. In fact, 1ºC increment in this variable causes 
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Fig. 7: RON and gasoline production rate versus iterations generated by Firefly algorithm. 

 

approximately 0.15 increasing in RON, while  

the maximum variation of RON is one unit.  

Eventually, to determine the optimum conditions for 

different objective functions defined about this process,  

a firefly optimization algorithm is applied. The three 

defined objective functions are respectively i) Maximization 

of RON, ii) Maximization of RON and gasoline flow rate 

and iii) Maximization of RON, Gasoline flow rate, and 

Conversion. It was shown that maximization of RON, 

gasoline flow rate and conversion may be obtained when 

the feed flow rate, inlet reactor temperature, TTMC and 

TBDC respectively set at 43000 bbl/day, 525ºC, 138ºC, 

and 169ºC. However, maximization of two variables 

including RON and gasoline production flow rate  

is achieved at the operating conditions the same as the 

conditions mentioned above except some changes  

in the TBDC and TTMC. In this case, these variables 

should respectively set at 170ºC and 133ºC.  
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