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ABSTRACT : A new derivation of the quantum Bolizmann transport
equation for the Fermion system from the quantum time evolution equa-
tion for the Wigner distribution function is presented. The method exhibits
‘the origin of the time- irreversibility of the Boltzmann equation. In the
present work, the spin dependent and indistinguishibility of particles are

also considered.
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INTRODUCTION : ,

Approximately one hundred years ago, L.
Boitzmann [1] derived his transport equation for
dilute gases from physical arguments, The Boltz-
mann equation is accepted today as a means of
providing a completely adequate description of
the behaviour of dilute gases. The resulting
solutions of the Boltzmann transport equation
by the Chapman- Enskog perturbation method
[2] involve a set of integrals called "collision
integrals”, which are used to obtain expressions
for the fluxes and the transport coefficents.

Many authors have described methods of
deducing the classical Boltzmann equation from
the Liouville quation [3-9], and some others
proposed the quantum- mechanical Boltzmann
equation by using the von Neumann equation
[10-12]. In fact, it is well known that the uncer-
tainty principle makes the concept of phase
space in quantum mechanics a problematic one.
As a result, because a particle can not simul-
taneously have a well defined position and
momentum, the concept of a probability distri-
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bution function which is defined over the phase
space of the system can not be defined for a
quantum mechanical particle.On the other hand,
at low enough temperatures, the de Broglie wave

length of the lighter particles, suchas H, He . -
and electron gas in a superconductor becomes
comparable to that of their interaction rafige: -

and indistinguishibility of particles must be
taken into account. In quantum statistical
mechanics a density matrix method can be
developed and the quantum Boltzmann equa-
tion can be obtained from the quantum Liouville

equation. However, a quantum Boltzmann equa--

tion can be derived in terms of the Wigner
representation which will be introduced in the
next section.

In this paper, the quantum Bolizmann equa-
tion for a dilute quantum gas discribed by the
Wignei reduced distribution function is derived.
In the present work, the spin dependence and
Pauli principle areconsidered and the origin of
the time irreversibility of the Boltzmann equa-
tion is directly exhibited. '

The Wigner Distribution Function :

In this section we give a brief review of the
Wigner function, which was Proposed by Wigner
in 1932 [13]. The Wignaer function p_ , can be
considered as a quantum- mechanical phase
space distribution function and it is defined as a
Fourier transform of the density matrix p :

P )= (™ [T [T e

Qip:RIN)<q=R |p() | g+ R>dR

OF

where i is Planck’s constant divided by 2x and

{q, p} are the phase space coordinates of all
particles. The matrix element of p is deﬁned as:
<q-R|p(0)|q+R>

=y @+R,.Hy@-R) 2
for a pure state, and as :

<q-R|p(H) |q+R>
= 21 Q; qbl'(q +R, )y,(q—-R, 1) 3
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for a mixed state, where ¥, is the wave function
and W, is the Probability of the system being in
the state y, .

The N- Particle Wigner distribution function

is‘normalized by :

Jri@pyar=nt @

where dz = []dr, = []d? g, d* p, . Here we
introduce S- Particle Wigner functions defined

by :

p-w"’(q. v Q3 Py Py t)

(N S)! fpw(q’ P t)dt dTN' (S)

where V is the volume of the container. A

special case of the Wigner function is the one-
particle projection of Pu s deﬁned by :

J Pu(@ B, i, ... dry (6)

(N I

- Theexpectation value of an observable A(q,p)
becomes : ‘
<A>=[ [dqdp Al p) P8 B, 1) ™

which is analogous to the classical expression for
the average value, whére the dynamical function
A(qg,p,t) is a classical function. In other words,
the Wigner function can be used to express
quantum mechanical expectation values of
observables in a form which is very similar to
that of classical averages [14], i.c., by integrating
the product of the observable and the Wigner
function over the entire phase space.

- The time evolution equation for p_(q, p,
t)can be obtained by starting the time-
dependent Schrodinger equation. It can be '
shown that the time evolution of p_, for N-
Particle system is [14]:

0 -1 IV
H, Y A7 '(lmp)y———
{ Pw} 2 ( aqlaqnaql
&p 4
— O - 8
P 19P Py Ol + ®
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where H is the N- Particie Hamiltonian, {...}
denotes a Poisson bracket, V isthe potential
energy of the system, and A(lmn)= 1 if 1#m=n,
A(imn)= 2 if two indices are equal and
A(lmn)= 3 if three indices are equal. It is
evident that in the limit i— 0, Eq. (8) reduces
to the corresponding liouville equation, that is :

pu=1{H,p0) o

The h? term gives the quantum correction and is
considered in this work, but the fourth and
higher order terms of 1i* are neglected. From Eq.
(8) it is clear that the equation of motion is the
same as the classical equation of motion, when
the potential function has no third and higher
derivatives as, for example, in the case of a force
free problem, a uniform field or a system of
harmonic oscillators.

Derivation of the Quantum Boltzmann
Equation :

For the N- Fermion system, consisting of a
dilute spin- polarized gas, the Wigner distri-
bution function must be antisymmetric with
respect to the permutation of identical particles.
The approximate ngner function can be
defined as :

P |91 1)

= -\%J;r ;: (- 1)"1;{¢-l(.')(1 ,[),,,nm(z,t).»,ﬂm(N, 0}
(10

where VN is normalization factor, p is permu-
tation operator which exchange the indices S,
and ¢ﬁ(i) (i,t) is the single particle projection of
particle j at the phase point (q,,p,), which can
be normalized by :

T fendn=V (11
[
It can be noticed that the Wigner function

includes the description of the correlated
behaviour of the quantum mechanical particles
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making up the system. However, at a given time,
a situation may arise where the particles are
statistically uncorrelated. Of course, there was
an unrecognized difficulty for particles with
intrinsic spin angular momentum, where in such
a case there is an intrinsic quantum correlation
due to the Pauli principle. In fact, we can say
that the uncorrelated assumption included in
Eq.(10) fails to be true, because of the existance
of identical spin rotation effects and spin- spin
interactions. However, in this paper the spin
correlation effects are not considered and will be
studied later. We may choose the initial
condition of Eq. (10) as :

| A

P 14,8, ) = g (-1 F 18,0, o) (12)

Let us now consider a time interval At which
is much longer than the duration of one collj-
sion, but much shorter than the mean free time
of a typical particle between successive colli-
sions. If the gas is sufficiently dilute, the
function ¢(1, At) must be chosen in such a way
that Eq. (10) represents the best approximation
to the true Wigner function p_, at time At.This
approximation is similar to the famous stochan-
zahl hypothesis introduced by Boltzmann, which
fundamentally postulates the absence of correla-
tions of two particles impinging on each other,
that is :

PP, 2,0 =p"01, 1,92, 1) (13

As a result the best function ¢(i , At) can be
chosen in such a way that the single- particle
projection of the approximate p_ is equal to the
one- particle projection of the exact p_ at t=At,
so that :

Pw(l)(sl .14, > Py At)
- -1y
N 2, J 3% NG P

T; ¢, (L.A1) dry... dry _% m(l Ay Qe

In a similar way, the two particle projection can
be written as :
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. {maN
J dry.ny, [?:(-1)" P ¢, O(1,A0)... ¢, BN, A1)

N(N-1 ~ '
(15)
By making approximations suitable to a dilute

gas in the evaluation of (14) and (15), it is
possible to deduce a value for the change:

Ap =, A1) = 6, (i, o) (16)

which can them be approximated as :

)
ap - NA N 1
at vV At {my}2 N

[ty {307 P g, ()9, N)] -
SC-1y Pg, (1, )b, (N, )]} a7

f{p' s P9
q; » - » Qu} are assumed as the initial configura-
tion at t = 0 and final configuration at t = At,
respectively, then under the action of the Hamil-

as:

PP, A)=p(q , P, °) (18)

Therefore :

1
M=o 3
' v {mda N

{31 P [ (s o) b, N, )] - %(—_1)";
P

J o, dry,

[#,(1, o) ¢, (N, )]} (19)
where ¢q(i"°) and ¢,(i,o) are the prebollisiona]
and posi collisional single- particle distribution

functions at t=0, respectively. This equation is.

exact differential, and its evaluation yields the
best possible A¢. By using the Liouville
theorem, which expresses for an isolated system
is expressed as :

e, @'nrand {p,, ., py.

tonian, H, the Wigner function can be written

Eq. (19) can be rewritten as :

1 ) A
=T -1)P P ' o) —
4 1 {Z-.ILN E( ) wll(l *)

¢, (Lo)] J 0, dgy . day [ [, (20) 4, 03:0)--
¢, (N.)] dp, dp, ... dpy 21)

The multiple integral over the coordinates may
be broken up as follows [9] :

f‘d3q2 d’q, ... d’qy = J d%q, f d’q,...

VAV, V-AVy

J +J &, d&q..f dqu+

V-AVy AV, V-AVy V-AVy

Permuwtations+ J d%q, f dq,f  d’q,.
AVz AV, V‘Avl

f d:"qN + Permutations + Configurational
V-AVy

Permutations (22)

The first term on the right- hand side gives the
contribution of configurations in which none of
the particles 2, 3, ..., N collide with particle 1
during the time interval At. The second line
contains (N-1) terms altogether, and configu-
ration permutation represent (1,3), (1,4),...
coltisions.The third line contains — (N-1)(N-2)
terms, each representing a ternary collision, and
so on, :

In a dilute gas, when the ternary and higher-
order coflisions are neplecied, we can write:

Ap = a4V + Ap® (23)
where the superscripts represent the order of the
collisions involved. -

Calculation of A¢™ and Ap®
Using Eqs. (21), (22)and the definition of
ApD, we have :

1 1 | >
Aph =y [, (U'he) - ¢ (LN ] S ap
) e i=2
. ) . ”
'!"-AV.' dq',¢'i(1’r) . . ( )
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which is similar to the classical form A simple
calculation yields :

860 = g, (1'10) =, (Le)] (1 -7 n(ql)l

(25)
where AV is a suitable average of the excluded
volume AV,(q, , p, , p;) over the momenta p,
and n(q,) in the number density, ie.,

) =5 Sdpete) @9
Using the identity :
limy_, 1= =ep(-Q) @D

and assuming the particie 1 does not collide
during time t , ie.,

P - At- P '
r1'_“|'1"TP1 » P 1T ) (28)

. Eq (25) becomes :

M(l)a’ H__
Tl = 1!3_} . Vg(1,0) 29)

Let us now evaluate A¢@, the contribution

of binary collisions of particle 1 with one other
particle. This contribution consists of (N-1)
terms, Straight forward combination of Eq.
(19)with (22) gives :

M(Z) = NT.I E f {|¢(l',o)¢(2'lo)‘ -
My AV

|4(1,0) $(2,0) | } ¢, (30)

where |...| denotes a determinant. Substitution
of Egs. (29), (30), (14) into (17) then gives the
result-:

1LY
Pa_ = {H,,5,9} +3, (0,N], 12,71) G

where H, is the one particle Hamiltonian and :

10,110, l’l)=N a 2 f{l  D|1)

w6121 - 12, M) up.“’(s i2)i }uv2
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Eq. (31) is the famous Boltzmann equation for
spin dependent Wigner distribution functions.
The first term on the right hand side of Eq. (31)
is a drift term and the second term is a collision
term, which describes the effect of binary
collisions. ) '

It can be understood that the origin of the
time- irreversibility of the Boltzinann equation is
related to the replacement of the exact N- Par-
ticle Wigner function by approximate form (10),
since the information about the state of the
system at t=At may be lost.

Finally, an attempt is made to explam the
quantum correction due to the wave property of
particles on the Boltzmann transport equation.
By taking the integration of Eq. (8)over all
particles but one, and oonsndenng the evaluation
of Eq. (31), we obtain :

2
20 = {1y, 0,9} + 1015, 1.0 ) =

O(m) 9,0

5 -t [ 220 2

Ima 3p- apl
b (1) .;fv__dg dr. O +
JL 00 e aq, Ho - dew ¥ OB + -

33
This equation is the quantum Boltzmann equ-
ation for a fermion system, The first term on the
right- hand side represents the change in p "
due to the collisionless motion of the molecules,
called a drift term. The second term represents
the change of p_(!) due to the binary collisions,
and the third term is the first- order quantum

_correction term. The fourth and other terms are

the higher- order quantum correction terms,
which is usually neglected.

CONCLUSIONS :

A quantum Boltzmann equation for the spin-
polarized system has been derived for the
Wigner distribution function for a dilute
quantum gas without internal states. This is Eq.
(33). This equation reduces to the classical form
at high temperatures for spin independent
particles. At low enough temperatures, the term
h? in Eq. (33) must be taken into account and

67
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the Pauli principle must be considered. The
present method directly exhibits the origin of
time irreversibility of the Boltzmann equation. It
is shown that the time- irreversibility may be
related to the replacement of the exact Wigner
function by an approximate function [10].
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