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ABSTRACT: This article deals with the issues associated with developing a new design 

methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination 

of multiple neural networks is selected and used to model a nonlinear multi-input multi-output 

(MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based 

on this model is then developed. The proposed scheme has been tested on a model of an 18-plate 

multi-component distillation column. The algorithm provides excellent disturbance rejection for this 

process. 
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INTRODUCTION 
In recent years, many papers and applications of MPC 

have appeared in the open literature. MPC has been 

successfully applied in chemical process industries. The 

MPC algorithm has many attractive features such as dead 

time compensation, multi-variable control and handling 

of system constraints. 

The MPC algorithm optimizes the process outputs 

over some finite future time interval known as the 

prediction horizon P. At the current time step, the future 

outputs are predicted using a dynamic model of the 

process. This model is used to compute the present and 

future M (M  P) control actions (control horizon),  

which minimize a user-specified performance index. 

 

 

 

After the M-th time step, it is assumed that the control 

action is constant. Only the first of the resulting optimal 

inputs is implemented on the process. This entire process 

is repeated at each time step. 

The choice of model representation is an important 

issue in MPC. A linear MPC system utilizes a simple 

transfer function model to represent the process. In 

practice, most of the systems encountered in chemical 

engineering have sever nonlinear dynamics. However, 

controllers based on a linear approximation of the process 

are only effective in a limited range around the nominal 

operating conditions. In a nonlinear MPC, a nonlinear 

dynamic model is used. Such models are accurate over a 
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broad range of operating conditions. Therefore, a 

nonlinear MPC allows processes to be run over a larger 

operating range without controller retuning. 

A number of nonlinear modeling techniques have 

been proposed in the literature [1-2]. Recently, neural 

networks are utilized to provide viable process models  
[3-6]. This is due to their ability to approximate virtually 

any arbitrary mapping between a known input and output 

space. In this study, a nonlinear MPC strategy based on 

artificial neural networks is presented for the control of a 

chemical plant. 

A single neural network (NN) model may be used to 

predict the process outputs. However, this model may not 

be able to extract all relevant information from the data 

set and the prediction error increases.  In order to 

maximize accuracy on future predictions in this work, a 

combination of multiple neural networks is employed to 

model the system. 

The organization of this paper is as follows. First, the 

methodology for combining the neural networks is 

presented. Second, an MPC optimization algorithm 

employing the proposed model is described. Lastly, the 

performance of the proposed model is demonstrated 

through application to a chemical process example. In 

this study, a model of a multi-component distillation 

column is studied to illustrate the technique discussed 

here. Using a full-order rigorous model with tray-by-tray 

calculations, the column is simulated. This process 

contains interaction among the variables and is nonlinear. 

 

MULTIPLE   NEURAL   NETWORKS 

A combination of multiple neural networks is used to 

model a 3-input 2-output nonlinear dynamic system.  As 

shown in Fig. 1, the proposed system consists of a two-

dimensional array of neural network blocks. Each block 

consists of a one-step-ahead predictive neural model, 

NNj, which is identified to represent each output yj of the 

MIMO system. Therefore, each block represents a 

multiple-input single-output (MISO) subsection of the 

whole MIMO system.  All blocks in the j-th row utilize 

the same model as NNj.  These models are employed to 

predict the future outputs of the output yj over the 

prediction horizon of P time steps. 

The neural models are multi-layer feed-forward 

neural networks containing one hidden layer.  The hidden 

layer contains 10 neurons.  The activation function used 

for   the   neurons   in  the  hidden layer   is  a  Hyperbolic  

Tangent function.  A linear activation function is used for 

the single output node of each network. Fig. 2 shows the 

details of a typical NN block used in this system. As 

shown in this figure, past and current samples of each 

process input ui, and past and current output samples of 

the process output yj are used as inputs to the network. 

At time k, the input vector to  the block  NNj( in)  is 

defined as: 

), d  - 3-i(ku [ 1)-i (kI 1jn1nj                               (1) 

), d -1-i(ku), d -2 -i(ku 1jn11jn1   

 ), d- 2-i(k u  ), d  -3-i(ku 2jn22jn2   

), d  - 3-i(ku), d- 1-i(ku 3jn32jn2   

), d -1-i(ku ), d- 2-i(ku 3jn33jn3   

,1)]-i(kyp 2), -i(kyp 3),-i(kyp T
njnjnj   

Where ypj = yj is the j-th measured output of the plant, 

dij is the time delay between the i-th input and j-th output 

and T is the transpose operator. The future outputs in this 

vector are supplied by the preceding blocks. 

A correction term dj is added to the model output ymj 

to obtain the predicted output   ypj. The correction term dj 

accounts for the difference between the measured plant 

output and the model output.  Each predicted disturbance 

dj(k +  in) for any future time k + in  is assumed to be 

equal to the present dj(k). 

At time k, the  in-th predicted output vector    is given 

by: 

... ), 1)-i(kI(NN [ )i (kyp n1 1n                              (2) 

                    T
nN Nnjj )] 1)-i(kI(),...NN 1)-i(kI(NN   

Where NNj is the j-th output neural network mapping, 

and yp(k+in) = [yp1(k+in),… ypj(k+in),… ypN(k+in)]T. 

The back propagation learning algorithm is employed 

in this paper. At the beginning of the learning the step 

size η is set to a small value. During learning period the 

step size is adaptively changed to speed up convergence 

and to prevent the errors bouncing around the minimum. 

The error criterion is the sum of the squared differences 

between the actual outputs of the output nodes of the 

network and the desired outputs over all examples. The 

network training is stopped when the error stops 

decreasing or even starts to rise on an independent test set 

[9]. The errors for the one-step-ahead predictors 

described above are found to be less than 0.001. Training 

iterations are less than 1500. 
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Fig. 1: Two-dimensional array of neural network blocks 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: A typical NN block 
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An attempt was made to identify and use a large  

one-step-ahead predictor for the MIMO process at each 

prediction step. However, finding such a large model 

required further training time and effort. In addition, it 

was not possible to complete the training to a reasonably 

small error. The errors for the one-step-ahead MIMO 

predictors are found to be greater than 0.5. Training 

iterations are greater than 10000. 

Similar results were obtained by using a large P-step-

ahead predictor for the MIMO process. These observations 

may be explained as follows: 

(a) The input vector to the MIMO model must contain 

all the measured outputs, whereas the input vector to the 

MISO model includes only one measured output. 

(b) As shown in equations (1) and (2), each output of 

the network is related to an input vector. Each input 

vector generally consists of a distinctive set of pure lags 

between the network inputs and the output. Therefore, it 

is not possible to factorize the time lags in a single-step-

ahead MIMO predictor. Consequently, we need to employ 

a long chain of past input samples in the input vector.  

This largely increases the network weights.  Furthermore, 

the network attempts to approximate the underlying high-

order dynamic relationships associated with pure lags. In 

addition, some of the input samples in this chain are not 

required to predict certain outputs. For example, if an 

output has a pure time delay of five sampling times with 

respect to an input, the current value of this input together 

with its past four input samples are not needed to 

determine the underlying relationship, as defined by 

equations (1) and (2), between the output and input. 

Therefore, due to the reduced input and output data 

dimensionalities in the MISO model and reasonably low-

order tight correlations between its inputs and the single 

output, the resulting model is more accurate. As a result, 

a combination of MISO models outperforms a single 

MIMO model. 

 
NONLINEAR   OPTIMIZATION 

At time k, the task of the nonlinear optimizer is to 

calculate the present and future control actions which 

minimize the performance index:  

 
 


N

1j
n

P

d1i
j  - ) i  (k yp[E

ijn

                                  (3) 

       ,2/)] i  (k yd 2
nj   

Where  yp j(k + in  ), in =  1+dij ,…, P and  ydj(k + in  ), 

in = 1+dij ,…, P  are the predicted and desired trajectories, 

respectively of the j-th controlled variable. 

At the current time, the i-th present and future 

manipulated inputs ui(k - dij + in-1 ), in = dij +1,… dij +M;  

dij +M  P  are calculated repeatedly as: 

        ,ku/Ekuku ioldinewi                   (4) 

Where k’ is defined as k’ = k - dij + in-1, and  is the 

step size of the steepest descent method. 

According to equation (3), the gradients of the 

objective function with respect to the manipulated 

variables can be obtained as: 

  
 

N
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P

d1i
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                       )].'k(u/)ik(yp[ inj   

It can be shown that the partial differential of the 

output ypj of the NN employed in this work with respect 

to its i-th input ui can be given by: 





H

1i
h2ij

h

)i,j(u/yp                                             (6) 

                    ,)i,i(]))i(O1[ h1
2

hhid   

Where 1 and 2 are connection weights in the first 

and second layers, respectively, Ohid(ih )  is the output of 

the ih-th neuron in the hidden layer, and H is the number 

of neurons in the hidden layer. 

Equation (5) is computed by the partial differential 

chain operations applied to the multiple neural network 

system. 

 

PROCESS DESCRIPTION AND THE RIGOROUS 

DYNAMIC  MODEL 

The process studied is a modified version of the 

multi-component  distillation  column  described in [7]. 

The column has eighteen plates with a plate efficiency of 

0.5. This makes it equivalent to a column consisting of 

nine equilibrium stages plus a bottom stage.  The vapor 

feed to the column will enter below the fourth stage and it 

consists of a mixture of three components. The properties 

of these three components are given in [7]. A liquid side-

stream will leave from the fifth stage. The system has a 

partial condenser plus a reflux drum at the top and a re-

boiler at the bottom. 
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The column was controlled by a decentralized system 

employing single-loop controllers. The liquid level in the 

re-boiler is maintained by varying the bottom product 

flow rate. The control loops at the top were modified as 

follows. The reflux flow is controlled by a flow 

controller.  A level controller maintains the liquid level in 

the reflux drum by manipulating the cooling water to the 

overhead condenser. The entire liquid distillate was fed 

back to the column as reflux. By using this control 

configuration, the flow rate of the liquid distillate was 

made equal to the reflux flow rate. In order to implement 

this control scheme, the algorithm for the partial 

condenser was modified. The partial condenser described 

in the above reference assumed either a specific heat  

flux or a condensate temperature, whereas the newly-

developed algorithm assumes a precise output condensate 

flow rate. The condensate rate was chosen to be equal to 

the reflux rate at each sampling time. 

In addition, the column dynamic simulation routines 

presented in the above reference were modified, and they 

were coded using the Microsoft Visual C++ programming 

environment. The distillation column simulation reflected 

the nonlinear characteristics and interactive feature of a 

real process. 

The control loops described so far is required for 

stable operation of the column. To achieve composition 

control, the MIMO control scheme developed in this 

study is used. The controlled process variables are the 

temperatures T2 and T9 on stages 2 and 9 respectively 

(counting from the bottom). Using the column simulator 

discussed in this section, it is found that the tray 

temperature T9 gives a good indication of heavy 

component loss out of the top of the tower.  In addition, 

the temperature changes in T2 are substantially large 

when the bottom product purity varies. 

The steady state values of T2 (T2s) and T9 (T9s) are 

105.73 oC and 79.07 oC respectively. The manipulated 

variables employed are the reflux flow (L) and the steam 

valve stem position (V). The steady state values of L (Ls) 

and V (Vs) are 13 moles/min and 70% respectively. 

Changes in the feed flow rate (F) are employed as 

uncontrolled disturbances which tend to drive the 

controlled variables away from their set points. These 

changes are considered to be ‘measured’, that is, their 

effect is fed forward in control calculations. The steady 

state value of F (Fs) is 25 moles/min. 

PROCESS   NONLINEARITIES 

Open-loop temperature responses to step changes in 

the feed flow (F) are shown in Figs. 3-6. In Figs. 3, 4, 5 

and 6 the step sizes are 5% and 10%, 15% and 20% 

of the steady-state value, respectively. From these 

figures, it can be seen that the temperature responses to 

equal positive and negative changes in the feed flow are 

not symmetrical. 

The new steady-state values of the tray temperatures 

in Figures 3-6 are summarized in table 1. In addition, in 

this table T1 and T2 are deviations of the tray 

temperatures from their corresponding initial operating 

points.  Note that the tabulated values in the ninth column 

of this table indicate that T2 experiences a sign change 

as the magnitude of the step change is altered from  

–10% to –15% of the steady-state value. 

Therefore, the system exhibits dynamic and static 

nonlinear behavior in the region of operation. 

 

MODELING   BY   PROCESS   IDENTIFICATION 

Linear model of the multi-component distillation 

column 

Three dynamic response experiments were carried out 

in open loop to generate data for constructing the linear 

dynamic model of the multi-component distillation 

column. The experiments consisted of manipulating a 

single input at a time. The other inputs were set at a level 

indicated by the process condition. 

In developing a linear model, one of the inputs was 

superimposed by a PRBS signal while the other two 

inputs were kept constant at their steady-state operating 

conditions. The PRBS sequence length was chosen to be 

256 and the pulses had a duration time of 0.5 minutes. 

Values of inputs and control outputs would be recorded at 

discrete times. Deviations from the corresponding inputs 

and outputs steady-state values were used as the 

identification data to develop the model. In this work, the 

linear model was determined by extracting the step 

response data of the plant using the system identification 

toolbox of the MATLAB software. 

 

Neural model of the multi-component distillation 

column 

In a multi-component distillation column, the 

controlled variables have steady-state nonlinear 

relationships with the manipulated and disturbance inputs.  
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Table 1: The new steady-state values of the tray temperatures 



F T2 T9 T2 T9 F T2 T9 T2 T9 

0 105.73 79.07 0 0 0 105.73 79.07 0 0 

5 105.33 81.07 -0.4 2 -5 106.10 76.78 0.37 -2.3 

10 104.98 82.73 -0.75 3.66 -10 106.1 74.52 0.37 -4.55 

15 104.69 84.11 -1.04 5.04 -15 105.16 73.16 -0.58 -5.91 

20 104.45 85.27 -1.28 6.20 -20 103.22 72.63 -2.51 -6.44 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.  3: Open-loop temperature responses to  5% step changes in the feed flow 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Open-loop temperature responses to  10% step changes in the feed flow 
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Table 2: Performance-index values of the controllers based on the linear and neural models of the column 
 

M ISE(LM) ISE(NM) IAE(LM) IAE(NM) ITAE(LM) ITAE(NM) 

4 5.0277 0.0263 12.2937 1.6779 600.7990 55.5436 

3 5.1106 0.0328 12.3240 2.0356 600.9236 69.8976 

2 5.3433 0.1996 12.9279 3.5162 639.6471 124.4246 

1 11.4757 2.1960 25.2308 17.6019 1035.6478 629.7830 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5: Open-loop temperature responses to  15% step changes in the feed flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6: Open-loop temperature responses to  20% step changes in the feed flow 
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In addition, the column exhibits a nonlinear dynamic 

behavior. 

If an excitation signal is applied at the operating point 

of the plant to extract its system dynamic and static 

characteristics, the results are not representative of the 

static and dynamic characteristics of the process over the 

entire range of the input variations. Due to the process 

nonlinearities, these results will be different if other 

operating conditions or different magnitudes of the 

excitation signal are implemented. 

To capture the process nonlinearities, the tests were 

run over a wide range of operating conditions, i.e. 

different reflux flow rate (L), vapor flow rate (V) and the 

feed flow rate (F). The training was carried out around 

five samples of operating points on each of the intervals 

[(Ls-22.3%), (Ls+22.3%)], [(Vs-15.2%), (Vs+15.2%)] 

and [(Fs-20%), (Fs+20%)], for the variables L, V and F 

respectively. 

At each operating point, a PRBS signal was used   to 

persistently excite each input of the process.  The PRBS 

sequence length was chosen to be 255 for the two 

manipulated variables L, V and F. The PRBS switching 

time was chosen to be 0.5 minutes. To avoid actuator 

restrictions, the magnitude of the PRBS at each input is 

set equally to its corresponding input amplitude span 

divided by 10. 

 

RESULTS 

MPC using the linear model of the column 

Using the step-response data generated in the former 

section, a predictive controller is designed for the plant. 

This controller is based on the unconstrained form of the 

MIMO dynamic matrix control (DMC) law. Details of 

the derivation of this control algorithm are available in 

the literature [8]. 

The controller based on the linear model of the 

column was applied to the plant. The distillation column 

was then subjected to changes in the feed flow rate (DF) 

using the multi-level signal as shown in Figs. 7 and 8. 

These changes take place within the interval of –20% to 

+20% of the operating feed flow rate.  The magnitude of 

the quantum jump (step size) between one level and the 

next is equal to 5% of the steady-state value. 

In Figs. 7 and 8, measured disturbances in the feed 

flow (DF), the controlled outputs (DT9 and DT2) and the 

profiles of the manipulated variables (DL and DV) are 

shown. Each input or output value in these figures is 

shown using the deviation from its corresponding  

initial operating point (e.g. DL = L-Ls). For control 

calculations, P is fixed at four and the value of M is 

varied from 1 to 4. Profiles corresponding to M = 2 and 

M = 3 are not shown. 

The control quality is evaluated by computing the 

performance criteria for different values of the control 

horizon M. All the three optimization criteria: ITAE, IAE 

and ISE are tried. The second, fourth and sixth columns 

of table 2 contain the values of the performance indices 

for the MPC systems based on the linear model (LM)  

of the plant. Referring to these values, one can see  

that the controller with the value of M = 4 has a superior 

performance. However, in real control, high value  

of M can yield more dynamic actions and stability 

problems can arise. Therefore, a lower value must be 

chosen for M. 

 

MPC using the neural model of the column 

The optimizer developed in the corresponding section 

was applied to control the column. The model role in the 

nonlinear MPC algorithm was satisfied by the multiple 

neural network model described in the related section. At 

the same time, the first principle model developed in 

associated section performs the column simulator role. 

A similar sequence of changes in the feed flow rate as 

in the preceding section was made. The results are shown 

in Figs. 9 and 10. Each controlled output profile in Figs. 7 

and 8 is compared to its corresponding profile in Figs. 9 

and 10. The consequential assessment reveals that the 

MPC using the neural model rejects the disturbance much 

better than does the MPC using the linear model. 

The third, fifth and seventh columns of Table 2 

contain the values of the performance indices for the 

MPC systems based on the neural model (NM) of the 

plant.  A comparison of the corresponding performance-

index values in each row of this table shows that the 

response obtained with the MPC algorithm using the 

neural model is superior to that obtained using the linear 

model. 

 

CONCLUSIONS 

This paper deals with a predictive control strategy 

employing a multiple neural network model of the 

process.   The  multi-step  MPC   optimization   algorithm 
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Fig. 7: Profiles of the controlled outputs (DT9 and DT2) and manipulated inputs (DL and DV) for regulatory control 

using MPC (P=4 and M=4) with a linear model of the column after measured disturbances in the feed flow rate (DF) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 8: Same as Fig. 7, but M=1
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Fig. 9: Profiles of the controlled outputs (DT9 and DT2) and manipulated inputs (DL and DV) for regulatory control 

using MPC (P=4 and M=4) with a neural model of the column after measured disturbances in the feed flow rate (DF) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Same as Figure 9, but M=1 
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derived in this paper provides excellent regulatory 

performance, as demonstrated for the multi-component 

distillation column. Simulation results demonstrate the 

ability of the proposed strategy to outperform the MPC 

algorithms based on the linear model of the plant. 
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