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ABSTRACT: Based on driving force for crystallization of one-component gas hydrate, in this 
report an expression for the supersaturation for crystallization of multicomponent gas hydrate is 
derived. Expressions for the supersaturation are obtained in isothermal and isobaric regimes. The 
results obtained are applied to the crystallization of hydrates of mixtures of methane plus ethane 
and can apply to other mixtures. 
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INTRODUCTION 
Gas hydrates are crystalline compounds that can be 

formed when light gases, such as methane come into 
contact with water at a temperature close to freezing point 
of water and at high pressure. The light gases may enter 
into the lattice of water molecules and stabilize it, 
resulting in a three dimensional framework containing 
large and small cavities. Such cavities can be occupied by 
certain gas molecules whose diameters are less than the 
cavity diameter. Time-dependent hydrate phenomena are 
substantially more challenging than time-independent 
hydrate phenomena such as structure and thermo-
dynamics. Today, gas hydrates have drawn much 
attention, not only as a new natural energy source [1, 2], 
but also as a new means for natural gas storage and 
transportation [3, 4]. Moreover, new ideas have been 
offered in order to avoid hydrate formation by controlling 
 
 
 

the parameters that have an effect on the rate of hydrate 
formation. Therefore, considering these developments, it 
is necessary to pay specific attention to hydrate formation 
kinetics and its effective parameters. 

One of the effective parameters in gas hydrate 
formation is the driving force, which is also known as 
supersaturation [5,6]. The driving force necessary for 
hydrate crystallization is the difference between the 
Gibbs free energies of the solution and crystal phases.  
On this basis, a number of driving forces for the nucleation 
and growth process of hydrate crystallization have been 
introduced in the literature [7-10]. In the present report, 
the driving force for crystallization of one-component gas 
hydrate [11] is extended to gas mixtures and the driving 
force is obtained based on the difference between the 
Gibbs free energies of the solution and crystal phases. 

 
 
 

* To whom correspondence should be addressed. 
+ E-mail: vafaiesm@modares.ac.ir 
1021-9986/07/2/63         8/$/2.80 
 



Iran. J. Chem. Chem. Eng. Izadpanah, A. A., et al. Vol. 26, No.2, 2007  
 

64 

GENERAL  ANALYSIS 
Let’s consider a three-phase system consisting of:  

(i) a multicomponent gas, (ii) an aqueous solution of the 
gases, and (iii) a solid crystalline hydrate composed of 
water and the guest gases (Fig. 1). The gas phase is 
considered to be water-free because the partial pressure 
of water vapor in it is often negligible at the hydrate 
crystallization temperatures. The system is held at 
conditions of fixed pressure P, temperature T and 
composition z . The hydrate phase is formed as a result of 

the following precipitation ‘‘reaction’’ occurring in the 
solution [2]: 

OHNGn 2wh
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=

                                                (1) 

( ) OHN.Gn...Gn.Gn 2whnhnh2211  

In this equation, ni is the number of gas molecules that 
occupy the cavities. Nwh is the number of water molecules 
in the sI and sII hydrate unit cells (i.e., 46 and 136, 
respectively). By dividing the above equation by Ncav, the 
number of cavities that can be occupied by the guest gas 
molecules in the hydrate unit cell, this newly developed 
equation becomes: 
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where nwh is the number of water molecules per cavity 
number that can be occupied by the guest molecules. In 
one-component gas hydrate, we have one molecule of 
dissolved gas, and nw water molecules of the solution 
which form one building unit of the hydrate crystal [11]. 

In this work, ∑
=

nh

1i
cavi Nn  molecules of the dissolved 

gases, and nwh water molecules of the solution,  
form one building unit ( ) ( )( ...GNn.GNn 2cav21cav1  

( ) OHn.GNn 2whnhcavnh of the hydrate crystal.  For a 

stoichiometric hydrate crystal we have  1Nn
nh

1i
cavi =∑

=

. 

Although,  the  number  and  types  of  cavities  in  the 
hydrate structure is known and determined, different 

molecules occupy different cavities.  Thus, for different 
hydrate structures and components Ncav will vary.   
For example: (i) in a mixture of methane and ethane that 
form sI structure, Ncav = 8 (i.e.: 2+6=8), (ii) in a mixture 
of  propane and methane that form sII, Ncav = 24  
(i.e.: 16+8=24), and (iii) in a mixture of propane and 
ethane that form sII, Ncav = 8 (i.e.: 0+8=8). 

For the reaction shown in Eq. (2), applying the 
constraint of chemical equilibrium [12], we derive the 
following expression for the chemical potential µhs of  
a hydrate building unit in the solution: 

wwh
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N
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where 
igsµ  and µw are the chemical potentials of the gas 

and water molecules in the aqueous solution, 
respectively. 

Having determined the chemical potential of a hydrate 
building unit in the solution, the driving force for 
crystallization, which is the difference between the 
chemical potential of the given substance in the solution 
and in the crystal, is derived. The driving force for 
crystallization, also called supersaturation, is commonly 
denoted by ∆µ and is obtained from the following 
equation [5, 6]:   

hhs µ−µ=µ∆                                                                 (4) 

where, µh is the chemical potential of a building unit 

( ∑
=

nh

1i
cavi Nn  gas molecules and nwh water molecules) in 

the hydrate crystal. Substituting Eq. (3) in Eq. (4), we 
obtain: 

hwwh
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i
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Nucleation and/or growth of hydrate crystals are 
possible only when the solution is supersaturated  
(i.e., ∆µ>0). 

By using the definitions that were considered in Ref. 
[11], and recalling that in  is a function of P and T [2], 

we can express ∆µ in terms of the actual concentration 
Ci[m-3] of dissolved gases in the aqueous solution as: 
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Fig. 1: Three-phase system of multicomponent gas, aqueous 
solution of the gases and gas hydrate. 
 

=µ∆                                                                              (6) 
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( ) ( )x,P,TP,Tn hwwh µ−µ  

This general equation gives the dependence of ∆µ on 
Ci in crystallization of gas hydrates in aqueous solutions 
of multicomponent gas. 
 
Chemical equilibrium between solution and gas phases 

In this case, the aqueous and gas phases must be in 
contact with each other for a long time in order for  
the system to reach equilibrium. The equilibrium 
concentration Ci is then determined by the following 
condition: 

ii gggs µ=µ                                                                      (7) 

where ( )y,P,T
iggµ  is the chemical potential of a gas 

molecule in the gas phase (Fig. 1).  Eq. (7) implies that in 
the case of solution/gas equilibrium, we can replace 

igsµ in Eq. (5), or the first two summands on the right-

hand side of Eq. (6), by
iggµ . Hence, we can eliminate the 

gas concentration Ci and obtain ∆µ in the form: 
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     ( ) ( )x,P,TP,Tn hwwh µ−µ  

This general formula reveals that in the case of 
solution/gas chemical  equilibrium,  supersaturation  (∆µ)  

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2: Three- phase equilibrium curve for gas, solution  
and hydrate. 
 
depends on P, T, the gas phase composition y , and  

the hydrate phase composition x . Eq. (8) allows 

determination of the supersaturation in an arbitrary 
regime of variation of P, T and y . We shall now consider 

the two important regimes of isothermal and isobaric 
variation of ∆µ. 
 
Isothermal regime 

This regime is illustrated in Fig. 2 by a vertical line 
from point A to point S. In this regime, ∆µ is varied  
by changing P at constant T and y . As known from 

thermodynamics  [13], for this regime we can write: 

( ) ( )[ ]Pyy,P,TlnkT)T(y,P,T ii0,gggg ii
φ+µ=µ             (9) 

( ) ( ) ( )∫ υ+µ=µ
P
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( ) ( ) ( )∫ υ+µ=µ
P

0 h0,hh 'dPx,'P,TTx,P,T                     (11) 

where φi is the fugacity coefficient of component i in the 
gas phase, υw [m3] is the volume of a water molecule in 
the solution,  and υh [m3] is the volume of a building unit 
in the hydrate crystal. 0,gg i

µ , 0,wµ  and 0,hµ  are 

reference chemical potentials depending only on T. 
Substitution of the above equations in Eq. (8) yields: 
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As we know, the phase equilibrium between solution 
and hydrate is characterized by ∆µ = 0. At the chosen 
temperature T, there is an equilibrium pressure Pe (T), 
corresponding to point A in Fig. 2, point at which the 
supersaturation becomes zero. The Pe (T) function can be 
obtained from the expression: 
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This expression allows elimination of the reference 
chemical potentials ( )Tn 0,wwh µ  and ( )T0,hµ  in Eq. (12) 

and representation of µ∆  in the form of: 
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This is the general formula for ∆µ in isothermal 
regime provided that the solution is in equilibrium with 
the gas phase. It can be simplified with the help of the 
following approximations: 

( ) ( )eii P,TnP,Tn ≈ , ( ) ( )ehehh P,Tx,P,T υ≈υ≈υ  and 

( )eww P,Tυ≈υ  
For P close enough to Pe, the above relations imply 

negligible pressure dependence of: (i) the number of gas 
molecules that occupy the cavities; (ii) the compressibility 
of the aqueous phase; and, (iii) the compressibility of the 
hydrate phase. Their use in Eq. (14) results in: 
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where: 

( ) ( ) ( )ehewwhe P,TP,TnT υ−υ=υ∆                          (16) 

and ( ) cavei NP,Tn  is the total fractional occupation of 
cavities by molecule i. 

The fractional occupation of a cavity of type j by a 
molecule of type i, is obtained [2]: 

∑
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where Cij is the Langmuir constant of molecule i in cavity 
of type j and fi is the fugacity of component i. By using 
this equation, we can calculate total fractional occupation 
of cavities as: 
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cav
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N
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=                           (18) 

where 1 and 2 are the types of cavities (i.e., small and 
large cavities in sI and sII). 

In the case when Ncav is the number of cavities that 
can be occupied by gas molecule in unit cell of the 
hydrate crystal lattice, which its volume is υcell, we can 
calculate υh by using the relation: 

cav

cell
h N

υ
=υ                                                                   (19) 

combining Eqs. (16) and (19), leads to: 

cav

cell
wwhe N

n υ
−υ=υ∆                                                (20) 

Eq. (15) differs from that of Gnanendran et al. [14] in 
which they used the water free mole fraction of gaseous 

components in hydrate phase, h
mx , while in this work, the 

total fractional occupation of cavities by molecule i, was 
considered. 
 
Isobaric regime 

In this regime ∆µ is varied by changing T at constant 
P and y .  This  is  shown  in  Fig. 2 by a horizontal arrow  
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from point B to point S. From thermodynamics [13], in 
isobaric regime 

iggµ , µw and µh are given by: 

( ) ( ) ( )∫ ∗
−µ=µ ∗ T

T gggggg 'dTy,P,'TsPy,P,T
iii

               (21) 
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Here, 
iggs , sw and sh are the entropies per gas 

molecule in the gas phase, per water molecule in the 
solution and per hydrate building unit in the hydrate 

crystal, respectively. ∗µ
igg , ∗µ w  and ∗µh  are reference 

chemical potentials depending only on P, and T* is a 
reference temperature. Using the above equations in the 
general expression for∆µ, Eq. (8), results in: 
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At the chosen pressure P, there exists an equilibrium 
temperature Te(P) at which the solution and the hydrate 
phase can coexist. It corresponds to point B in Fig. 2 and 
is the solution of the following equation: 
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Employing Eq. (25) to eliminate ( )Pn wwh
∗µ  and 
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∗µ  from Eq. (24), we get: 
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This is the general formula for ∆µ in isobaric regime 
when there exists equilibrium between the solution and 
the gas phases. It can be simplified by means of the 
following two approximations: 

(i) Approximation ( ) ( )P,TnP,Tn eii ≈ : This approxi-

mation ignores the temperature dependence of the 
number of gas molecules that occupy the cavities for T 

close enough to Te and results in elimination of ∗µ
igg  and 

T* from Eq. (26). This equation thus becomes: 

( )∫ ∆=µ∆
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where: 
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                ( ) ( )x,P,TsP,Tsn hwwh −  

And ∆s is the hydrate dissociation entropy per hydrate 
building unit at the given P and T. That is, the entropy 

changes due to the transfer of ∑
=

nh

1i
cavi Nn  gas molecules 

from the hydrate crystal into the gas phase and transfer of 
nwh water molecules from the hydrate crystal to the 
solution. 

(ii) Approximation resulting from Taylor series 
truncation:  According to thermodynamics [12], the 
entropy s and the heat capacity cp at constant pressure are 
related by ( )dTTcds p= . For that reason ∆µ from  

Eq. (27) can be expanded in the following Taylor series 
about T=Te [5]:  
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Table 1: Hydrate crystal structure and values of water molecules per cavities that can be occupied by gas molecules, 
number of cavities that can be occupied by gas molecules per unit cell of hydrate crystal, 

volume of hydrate building unit∗ υh, volume difference ∆υe . 

Gas Hydrate Structure nwh Ncav υh (nm3)  ∆υe (nm3)  

CH4 sI 23/4 8 0.216 -0.0435 

C2H6 sI 23/3 6 0.288 -0.058 

c-C3H4 sI 23/3 6 0.288 -0.058 

C3H8 sII 17 8 0.647 -0.137 

i-C4H10 sII 17 8 0.647 -0.137 

CH4+ C2H6 sI 23/4 8 0.216 -0.0435 

CH4+ C2H6 sII 17/3 24 0.216 -0.046 

CH4+ C3H8 sII 17/3 24 0.216 -0.046 

C2H6+ C3H8 sII 17 8 0.647 -0.137 

C3H8+ i-C4H10 sII 17 8 0.647 -0.137 
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where ∆se and ∆cp,e are the differences between the 
entropies and the heat capacities of the old and the new 
phases, respectively, at T=Te; and, dTdcc pe,p =′∆ , at 

T=Te. Since the second and the third terms have 
negligible contribution in Eq. (29) [11], we can ignore 
them. Then we can write: 

Tse ∆∆=µ∆                                                                 (30) 

here ∆T (K), is defined as: 

TTT e −=∆                                                                  (31) 

and the quantity ∆se (J/K), is given by: 
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                   ( ) ( )x,P,TsP,Tsn ehewwh −  

From basic thermodynamic relations [13], Te∆se=∆he, 
where ∆he is the enthalpy or latent heat (per hydrate 
building unit) of dissociation of the hydrate crystal into 
gaseous phase and liquid water at T=Te. 

CALCULATIONS  AND  RESULTS 
Table 1, shows the number of water molecules per 

cavity that can be occupied by the guest molecules and 
the number of cavities that can be occupied by the guest 
molecules in the cubic structures of hydrate crystal, sI 
and sII [1, 2]. The values of hυ  and ∆υe calculated from 

Eqs. (19) and (20) for a number of gas hydrates are listed 
in table 1.  

The calculations are based on 73.1d 3
0cell ==υ and 

5.18 nm3 for the cubic structures I and II, respectively,  
υw = 0.03 nm3 and the Ncav and nwh values listed in table 1 
(d0 = 1.2 and 1.73 nm is the lattice parameter of the sI and 
sII hydrate crystals [2]). 

The curves in Figs. 3 and 4 depict the ( )y,Pµ∆   

(Eq. (15)) for three different mixtures of methane and 
ethane hydrates at T=275.15 K, the  compositions of 
which are 25 %, 50 % and 75 % methane (mole fraction), 
respectively. Mixtures of methane and ethane can form sI 
and sII hydrate.  

In this work, the mixture containing 25 % and 50 % 
methane forms sI and the mixture containing 75 % 
methane forms sII hydrate, at T=275.15K. The curves 
were drawn with the aid of Pe = 0.7, 88.0  and 1.27 MPa 
for mixtures containing 25 %, 50 % and 75 % methane, 
respectively. For mixtures containing 25 % and 50 % 
methane, the fractional occupation of cavities by methane 
is  0.0990475  and  0.1981975,  for ethane  is   0.7149675  
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and 0.668775, and total fractional occupation is 0.814015 
and 0.8669725, respectively. For a mixture containing  
75 % methane, the fractional occupation of cavities by 
methane is 0.433447, for ethane is 0.31482, and total 
fractional occupation is 0.748267. These equilibrium 
pressures and the fractional occupation of cavities have 
been determined using the model of van der Waals and 
Platteeuw [15] with Kihara parameters obtained by Sloan 
[16]. The parameters that were considered in these 
calculations included, ∆υe from table 1 (represented by 
curve 1, in Figs. 3 and 4), ∆υe =0 (represented by curve 2, 
in Figs. 3 and 4), and φi values which were obtained by 
using the Peng-Robinson equation of state [17], with 
kij=0.0026. The difference between curves 1 and 2 
illustrates the appreciable contribution of the ∆υe  term, 
in Eq. (15), to the supersaturation at high pressure. 

The isobaric ( )y,Tµ∆  given by Eq. (30) is illustrated 

in Fig. 5 for mixtures of methane and ethane containing 
75 % and 25 % methane at P=7.89 and P=4.55 Pa, 
respectively. For both mixtures the equilibrium 
temperature is 290.0 K. The enthalpy of dissociation has 
been calculated by Clapeyron equation. The equilibrium 
temperature and pressure for these mixtures have been 
determined using the model of van der Waals and 
Platteeuw [15] with Kihara parameters obtained by Sloan 
[16]. At Te = 290.0 K, for mixtures containing 75 % and 
25 % methane, the enthalpies of dissociation are 80083.0 
and 76239.0 J/mol which yielded ∆se=33.2k and 
∆se=31.6k, respectively. 
 
CONCLUSIONS 

In this work we have derived a general expression  
for the supersaturation for nucleation of multicomponent 
gas hydrates.  We have assumed that the number of gas 
molecules that occupy the cavities is a function of 
temperature and pressure.  Consequently, this analysis 
provides two formulas at isothermal and isobaric regimes 
for driving force for nucleation of hydrates of 
multicomponent gas in aqueous solutions (Eqs.(14, 26)). 

In isothermal regime, the general formula for 
supersaturation was simplified (Eq. (15)), by ignoring the 
effect of pressure on: (i) the number of molecules that 
occupy the cavities, (ii) compressibility of aqueous, and 
(iii) compressibility of hydrate phase for pressure close to 
equilibrium pressure. 

In    isobaric    regime,    the    general    formula     for 

 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Pressure dependence of the supersaturation for 
crystallization of 25 % and 50 % methane mixtures at 
T=275.15 K. Curve 1 and 2 Eq. (15) with ∆υe = -0.0435 nm3 
and ∆υe =0, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Pressure dependence of the supersaturation for 
crystallization of 75 % methane and 25 % ethane mixture at 
T=275.15 K. curve 1 and 2 Eq. (15) with ∆υe = -0.046 nm3  
and ∆υe =0, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Temperature dependence of the supersaturation for 
crystallization of mixtures of methane and ethane. Solid line is 
for mixture containing 75 % methane at P=7.89 MPa, and dashed 
line is for mixture containing 25 % methane at P=4.55 MPa. 
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supersaturation was also  simplified, (Eq. (30))  assuming 
the effect of temperature on the number of molecules that 
occupy the cavities is negligible for temperature close to 
equilibrium temperature. 

 
Nomenclatures 
C                                                                   Concentration 
cp                                                                    Heat capacity 
Cij       Langmuir constant of molecule i in cavity of type j 
f                                                                             Fugacity 
G                                                                    Gas molecule 
H                             Enthalpy or latent heat of dissociation 
k                                                        Boltzmann’s constant 
n           Number of gas molecules that occupy the cavities 
nc                                                    Number of component 
nh                           Number of hydrate former component 
nwh                     Number of water molecules per occupied  
                                            cavities in hydrate crystal unit 
Ncav                  Number of cavities that can occupy by gas  
                   molecules in cubic structure of hydrate crystal 
Nwh                         Number of water molecules in the unit  
                                               structure of   hydrate crystal 
P                                                                             Pressure 
s                                                                              Entropy 
T                                                       Absolute temperature 
V                                                          Volume of solution 
υ                                       Volume of molecule or building  
                                                         unit of hydrate crystal 
x                             Vector of hydrate phase mole fraction 

y                                    Vector of gas phase mole fraction 

z                                                      Vector of composition 

 
Greek letters 
ϕ                                          Gas phase fugacity coefficient 
γ                                                            Activity coefficient 
µ                                                            Chemical potential 
θij                         Fractional occupation of cavity of type j  
                                                                       by molecule i 
 
Subscripts 
0                                                            Reference property 
e                                                       Equilibrium condition 
gg                                                                        Gas phase 
gs                                                  Aqueous solution of gas 
h                                                                   Hydrate phase 
hs                                           Aqueous solution of hydrate 

i                                                           Gaseous component 
j                                                                    Type of cavity 
w                                                                                Water 
 
Superscripts 
*                                                            Reference property 
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