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ABSTRACT: A neuro-fuzzy modeling tool (ANFIS) has been used to dynamically model cross flow 

ultrafiltration of milk. It aims to predict permeate flux and total hydraulic resistance as a function of 

transmembrane pressure, pH, temperature, fat, molecular weight cut off, and processing time. 

Dynamic modeling of ultrafiltration performance of colloidal systems (such as milk) is very 

important for designing of a new process and better understanding of the present process. Such 

processes show complex non-linear behavior due to unknown interactions between compounds of a 

colloidal system. In this paper, ANFIS, Multilayer Perceptron (MLP) and FIS were applied to 

compare results. The ANFIS approximation gave some advantage over the other methods. The 

results reveal that there is an excellent agreement between the tested (not used in training) and 

modeled data, with a good degree of accuracy. Furthermore, the trained ANFIS are capable of 

accurately capture the non-linear dynamics of milk ultrafiltration even for a new condition that has 

not been used in the training process (tested data). In addition, ANFIS and Multilayer Perceptron 

(MLP) are compared and the Matlab software was adopted to implement the method. 
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INTRODUCTION 

Over the last few decades, neural networks and fuzzy 

systems have established their reputation as alternative 

approaches to information processing. Both have certain 

advantages over classical methods, especially when 

vague  data  or prior   knowledge  is  involved.  However,  

 

 

 

their applicability suffered from several weaknesses of 

the individual models. Therefore, combinations of neural 

networks with fuzzy systems have been proposed, where 

both models complement each other. These so-called 

neural  fuzzy  or  adoptive  neuro-fuzzy inference systems  
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(ANFIS) allow overcoming limitations in parameter 

optimization which offers appealing features [1]. 

Numerical analysis approach of fuzzy system was 

first presented by Takagi and Sugeno�and then a lot of 

studies have been made�[2]. Since the systems using 

fuzzy theory can express rules or knowledge as "If-Then" 

form, they have advantages such as they do not need 

mathematical analysis for modeling. However, they need 

the appropriate model construction and parameter 

selection [2-8]. This kind of fuzzy modeling problem is a 

troublesome work in general. On the other hand, studies 

of fuzzy neural networks that combine both advantages of 

the fuzzy systems and the learning ability of the neural 

networks have been carried out. These techniques can 

improve the matter of fuzzy modeling by the learning 

ability of neural networks and have been reported since 

around the beginning of 1990s [3,4]. Fuzzy neural 

networks can be applied not only for simple pattern 

classification but also meaningful fuzzy if-then rules 

creation; therefore, they can be put into practice for 

various applications. In the early stage of fuzzy neural 

network researches, Lin et al., [3] proposed one of the 

current prima models that decide the initial fuzzy model 

by Kohonen’s self-organizing algorithm [9] and carry out 

parameter adjustment by back propagation algorithm. 

Also as a representative example, Jang et al., [10] 

proposed ANFIS in 1993. 

ANFIS applies a neural network in determination of 

the shape of membership functions and rule extraction. 

However, since it needs to divide the input data space in 

advance, accuracy of the system depends much on the 

achievement of this pre-processing. Wang et al., [11] 

reported an approach to acquire fuzzy rules by dividing 

input space. These techniques, however, do not consider 

the output data space, so the obtained rules should not be 

always reasonable. Since the architecture and behavior of 

ANFIS are very applicable [12], it has been adopted as a 

basic component for interpretation researches [13,14]. 

However, its fuzzy modeling for the target task is not 

always sufficient. 

     Many systems that aim at excellent fuzzy 

modeling and carry out input selection, rule creation and 

parameter estimation have been proposed [5-8, 15, 16]. 

Elimination of unnecessary rules and selection of 

efficient input elements can contribute to the performance 

improvement, reduction of calculation cost and analysis 

of the obtained rules that is one of the most important 

merits of fuzzy systems. In these researches, Linkens et al., 

[7, 8] reported effective input selection and rule creation 

method and showed the excellent results on their 

experiments. In addition, since the algorithms are 

complicated and their algorithms and results are 

presented only for single output system, they have 

difficulty if they are employed for many applications. 

Generally, many fuzzy neural network models have 

common problems derived from their fundamental 

algorithm. For example, the systems that use gradient 

decent method sometimes reduce the width of the 

membership function to negative during the learning. The 

systems that employ basic fuzzy inference theory make 

the degree of each rule extremely small and often make it 

underflow when the dimension of the task is large. In 

such a situation, the learning and inference cannot be 

carried out correctly. 

Dynamic modeling of ultrafiltration performance of 

colloidal systems (such as milk) is an important criterion 

in designing of a new process, due to the complex nature 

of the phenomena itself. In order to dynamically model 

cross flow ultrafiltration of milk, a neuro-fuzzy modeling 

tool (ANFIS) can be utilized. Through this means we 

would be able to predict permeate flux and total hydraulic 

resistance as a function of transmembrane pressure, pH, 

temperature, fat, molecular weight cut off, and processing 

time. Hence in this paper, an adaptive fuzzy inference 

neural network (ANFIS) is used to enhance the 

shortcomings of the conventional models. 

 

STRUCTURE OF ANFIS IN MILK ULTRA-

FILTRATION  SYSTEM 

An ANFIS can divide input-output data space and 

provide appropriate rules automatically. Fig. 1 shows the 

structure of ANFIS for milk ultrafiltration. It consists of 

three layers. The first layer is the input (I) layer, second is 

the intermediate (hidden layer) or rule-layer, and last is 

output (O) layer. The I and O layer consists of the input-

part and the output-part. Each node in the rule-layer 

represents one fuzzy rule. Weights from the input-part to 

the rule-layer and those from the rule-layer to the output-

part are fully connected and they store fuzzy if-then rules. 

Membership functions as premise part are expressed in 

the weights. Each weight from the rule-layer to  the  

output-part    corresponds   to   the    estimated   value   of  
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Fig. 1: ANFIS architecture of a six-input-one-output with 21 rules in milk ultrafiltration system. 

 

each rule. In short, the weights from the input-part to the 

rule-layer indicate if-parts of fuzzy if-then rules and those 

from the rule-layer to the output-part indicate then parts. 

The shapes of membership functions are adjusted 

automatically in the learning phase. 

 
ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

(ANFIS) 

From Sugeno Fuzzy Model, Adaptive Neural-Fuzzy 

Inference System (ANFIS) was proposed by Roger Jang 

in 1992 [17]. The architecture of a six-input twenty one-

rule ANFIS is shown as Fig. 1. In ANFIS architecture, a 

FIS is described in a layered, feed-forward network 

structure where some of the parameters are represented 

by adjustable nodes and the others as fixed nodes. The 

raw inputs are fed into the layer 1 nodes that represent the 

membership functions (mf) which is twenty one in this 

study for each input. 

For a first-order Sugeno fuzzy model, a common rule 

set with two fuzzy if-then rules is the following: 

Rule 1: If x1 is A1 and x2 is B1 and … x6 is f1, then  

f1= p1x1 + q1x2 + … + k1x6 + r1 

Rule 2: If x1 is A2 and x2 is B2 and … x6 is f2, then  

f2= p2x1 + q2x2 + … + k2x6 + r2 

The  ANFIS  has  five layers, in which node functions 

of the same layer have the same function type as 

described below: (Note that Oij, denotes the output of the 

ith node in the jth layer.) 

Layer 1: Every node i in this layer is an adaptive node 

with node function: 

( )
2

A

xx
expx �

�

�
�
�

�

σ

−
−=µ

∗

                                               (1) 

where { σ,x* } are premise parameters updated 

through hybrid learning algorithm and x is input variable. 

At least in the basic ANFIS method these parameters are 

not adjustable. 

Layer 2: Every node i in this layer is a fixed node 

labeled ∏ , whose output is the product of all the 

incoming signals: 
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Where x,…, x6 are input variables and n is nodes 

number. 

Layer 3: Every node i in this layer is a fixed node 

labeled N. The ith node calculates the ratio of the ith 

rule’s firing strength to the sum of all rules’ strengths. 
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This layer implements a normalization function to the 

firing strengths producing normalized firing strengths. 

Layer 4: The single node in this layer is a fixed node 

labeled �, which computes the overall output as the 

summation of all incoming signals: 
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where fi = pix1 + qix2 + … + kix6 +ri, x1,x2,…,x6 are  

input variables, {pi, qi,…, ki, ri } are consequent 

parameters updates through Recursive Least-Squares 

Estimation (LSE). The fifth layer represents the 

aggregation of the outputs performed by weighted 

summation. It is not adjustable. 

 

HYBRID LEARNING RULE: COMBINING BP 

AND LSE 

A hybrid-learning algorithm that is proposed is as 

follows [18]: 

� In the forward pass, node outputs go forwards until 

layer 3 and the consequent parameters are identified by 

the least squares method. 

� In the backward pass, the error signals propagate 

backward and the premise parameters are updated by 

gradient descent. 

These procedures are summarized in table 1. 

 

MATERIALS AND METHOD 

Experimental set-ups 

The pilot plant membrane system used in this study 

(as illustrated in Fig. 2) was equipped with a feed tank 

(20 lit), centrifugal pump, flow meter, spiral wound 

module, two pressure gauges, tubular heat exchanger, two 

control valves and temperature sensor (as are described in 

table 2). The two pressure gauges adopted in this work 

was used to measure the pressure at the inlet and outlet of 

the module. Temperature probe was attached to the feed 

tank and used for monitoring the temperature during each 

run. The temperature of feed was continuously controlled, 

monitored and adjusted by the rate of the heat exchanger.   

Table 1: Two passes in the hybrid learning procedure for 

ANFIS. 
 

Backward pass Forward pass 

Gradient descent Fixed Premise parameters 

Fixed 
Least-squares 

estimator 

Consequent 

parameters 

Error signals Node outputs Signals 

 
Table 2: Technical specification of the system adopted in this 

work. 
 

Module type Spiral wound 

Membrane length 470  mm 

Module outside diameter (O.D.) 52  mm 

Membrane effective surface area 0.33  m2 

Membrane type Polysulfone amide 

Molecular weight cut off (MWCO) 10, 20 and 50  KDa 

Pure water flux range 25 – 40  lit/hr 

pH range 2 - 11 

Pressure range 0.5 – 3   atm 

Fluid circulation rate 2 – 12.5  m2/hr 

Pump power 1.5  KW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Schematic flow diagram of the ultrafiltration pilot 

plant. 
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Table 3:  Input-output value samples used in this work. 

TMP TEMP FAT MWCO PH TIME JP RT 

150 30 0.1 20 6.67 4.5 6.75E-06 2.4E+13 

150 40 0.1 20 6.67 9.5 6.5E-06 3.25E+13 

150 50 0.1 20 6.67 28 5.5E-06 4.25E+13 

200 40 0.1 20 6.67 8.5 7.7E-06 3.65E+13 

150 30 0.1 20 6.43 30 5e-6 3.25E+13 

150 30 0.1 20 6.25 0 5e-6 3.25E+13 

150 30 0.1 20 5.97 7.5 3.9E-06 4E+13 

50 40 0.1 20 6.67 1 5.5E-06 1.25E+13 

100 40 0.1 20 6.67 5.5 4.75E-06 2.85E+13 

150 40 1.2 20 6.67 10.5 6e-6 3.5E+13 

150 40 2.4 20 6.67 13 5.8E-06 3.5E+13 

150 40 3.3 20 6.67 23 5.5E-06 3.7E+13 

100 40 0.1 10 6.67 22 2.1E-06 6.55E+13 

100 40 0.1 50 6.67 22 9E-07 2.38E+14 

 

In order to compute the weight of the permeate every 

30 seconds, an electronic balance and a container were 

adapted to record and weight of the permeate. 

 

Total hydraulic resistance and permeate flux 

The total hydraulic resistance (RT) can be expressed 

by Darcy’s law [19] (assuming that the osmotic pressure 

is minute): 

PJ

TMP
Rt

µ
=                                                                      (5) 

and permeate flux by [20]: 

Rt

TMP
.

1
J P

µ
=                                                                (6) 

where µp is the permeate viscosity, Jp the permeate flux 

and TMP the transmembrane pressure which can be 

calculated by the following equation: 

PoI P)PP(
2

1
TMP −+=                                                  (7) 

where Pi and Po are the inlet and outlet pressures, 

respectively and Pp is permeating pressure 

 

ANALYTICAL  METHOD 

In order to measure the permeate and retentate fat 

percentage of the samples, a device called Lactostar from 

Funke Gerber Company was employed. Viscosity and 

density of permeate samples were measured using an 

Ostwald U-tube capillary viscometer and a 25 ml 

densitometer, respectively at 40 oC for each run. A pH 

meter (3010, Jenway Ltd., UK) was adopted to measure 

the skim milk, permeate, retentate and flushing solutions 

samples (distillate water and NaOH solution) at 25 oC 

during the process. All measurements were carried out at 

least two times for each test run. 

 

Experimental procedure 

Reconstituted skim milk was prepared by adding 

medium heat skim milk powder to warm water (about  

50 oC) in a blender. The average composition of skim 

milk samples is recorded in table 3. 
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Table 4:  The ANFIS data used in this study. 

 
Jp Rt 

# of nodes 205 191 

# of linear parameters 98 91 

# of nonlinear parameters 168 156 

# of parameters 266 247 

# of training data pairs 228 228 

# of checking data pairs 270 270 

# of fuzzy rules 14 13 

error tolerances 0 0 

# of epochs 20 20 

 

The same batch of powdered milk was used in all runs 

to ensure that changes in measured parameters did not 

result from variation in the milk composition. The effect 

of varying TMP (50, 100, 150, 200,250 KPa), TEMP (30, 

40, 50 oC), FAT (0.1, 1.2, 2.4, 3.3 %), MWCO (10, 20, 50 

KDa), and PH (6.67, 6.43, 6.25, 5.97) on flux and total 

hydraulic resistance were studied in a batch mode and at 

a constant temperature. 

 

RESULTS  AND  DISCUSSION 

In this work, the applications of ANFIS for the 

dynamic prediction of permeate flux and total hydraulic 

resistance in the ultrafiltration of milk process has been 

performed for different operating conditions. The results 

of the modeling for Jp and Rt are demonstrated 

underneath: 

 

Method of applications 

The ANFIS data that are used for Jp and Rt are shown 

in table 4. The total number of fitting parameters is 399, 

which includes 147 for the premise and 252 for  

the consequent. The generation of FIS method is a 

subtractive clustering. The value adopted for influence, 

squash factor, accept ratio and reject ratio is 0.5, 1.25,  

0.5 and 0.15, respectively. 

 

Model training and testing 

The model was trained with part of the database 

extracted  from  the  experimental  work  described above  

(2560 data). The database was initially divided into two 

sections (i.e., the training and the testing data). The 

training data set was also broken up into two parts, a 

training set and a checking set. The advantage of neuro-

fuzzy model is that one can adopt fewer numbers of data 

for modeling purposes. The use of checking sets in 

ANFIS learning, alongside with the training set is a 

highly recommended technique to guarantee the model 

generalization  and  to  avoid over-fitting the model to the 

training data set. The Gaussian membership function is 

bounded between 0 and 1, in order to normalize the input 

and output data. The success of training process was 

accomplished using 120, 40 training epochs (iterations) 

for Jp and Rt, respectively. The ANFIS network was  

able to achieve training, checking RMSE of 0.0278 and 

0.787, respectively for Jp. Moreover, training and 

checking RMSE of 0.029 and 0.598, respectively were 

achieved for Rt. Figs. 3a and b exhibits the training  

and checking of the RMSE achievements with ANFIS for 

Jp and Rt. 

The results of modeling using ANFIS for the 

permeate flux (Jp) and total hydraulic resistance (Rt) at 

data set are shown in Figs. 4a and b, respectively. It can 

be seen that the magnitudes of both Jp and Rt vary 

significantly with index (data) values. These figures also 

exhibit that the complex behavior (non-linearity) of Jp 

and Rt profiles is well reproduced by the ANFIS. As 

shown in Fig. 4, there is an excellent agreement between 

the predictions (solid lines) and the experimental data. 

Furthermore, a plot of the predicted value against the 

desired values for flux and total hydraulic resistance are 

also exhibited in Figs. 5 a and b. In this figure, for each 

desired value, a predictive value can be obtained and a 

comparison between them will enable us to evaluate its 

deviation. The ability to predict Jp and Rt could 

significantly reduce the computation time and the amount 

of practical work required before designing a new 

membrane process. The previous studies have substantiated 

that the hybrid learning approach is supposed to converge 

better and faster than BP. 

During the ANFIS training, the training set up can 

predict the analytical forms of prod (i.e., product) and 

probor operators for the connectors AND and OR, the 

min for the IF-THEN implication, the max for the ELSE 

aggregation and the defuzzification method wtaver (i.e., 

weight average) produced for the crisp output. 
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Fig. 3: Training and checking of the RMSE achievements 

with ANFIS for: (a) Jp and (b) Rt respectively. 

 

Comparative studies between ANFIS, fuzzy and MLP 

A comparison of the ANFIS with experimental 

values, multilayer perceptron, and FIS predicted of flux 

and total hydraulic resistance for a time range of 0.11 to 

0.778 are shown in Figs. 6 a and b. The cascade-forward 

backpropagation structure used for artificial neural 

network prediction are composed of three layers (i.e., 3, 1 

and 1 neurons in the first, second, and output layer),  

train function “Trainlm”, adaptive learning function 

“Learngdm”, and performance function "MSE". The fuzzy 

system was Sugeno, which are composed of six inputs 

and one output for Jp and Rt. 

As shown in Fig. 6 there is an exceptionally good 

agreement between the ANFIS and the desired data. 

 

CONCLUSIONS 

Dynamic modeling of milk ultrafiltration performance 

is vital for designing purposes and a better understanding 

of   the   phenomenon   itself.    This    paper presents   the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4:  Comparative studies between the desired and ANFIS 

predicted values for: (a) flux and (b) total hydraulic 

resistance, respectively. 

 

application of a class of hybrid neuro-fuzzy network for 

the solution of a nonlinear complex processes.  Another 

prime objective of this work was to investigate the ability 

of adaptive neuro-fuzzy networks and to justify their 

relevance to predict the Jp and Rt characteristics for the 

milk ultrafiltration process.  

In this study, the accomplishment of neuro-fuzzy 

predictors was demonstrated and their performance was 

illustrated using the results obtained from adaptive neuro-

fuzzy networks. Furthermore, ANFIS, multilayer 

perceptron (MLP) and FIS were utilized for comparative 

purposes. The result reveals that implementation of the 

ANFIS approximation are advantageous over other rival 

methods. The result also exhibit that there is a good 

agreement between the checked (not used in training) and 

modeled data. In addition, the trained ANFIS was able to 

accurately capture the non-linear dynamics of milk 

ultrafiltration phenomenon for a new condition that has 

not yet been used in the training processes (tested data). 
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Fig. 5:  Predictive versus desired values for: (a) flux and  

(b) total hydraulic resistance, respectively. 

 

Acknowledgement 

The authors would like to express their appreciation 

to the Department of Agriculture of Ferdowsi University 

in allowing them to access the laboratory facilities. 

 

Nomenclatures 

Rt                                     Total hydraulic resistance, (m-1) 

Jp                                                         Permeate flux, (m/s) 

Pi                                                        Inlet pressure, (KPa) 

Po                                                     Outlet pressure, (KPa) 

Pp                                             Permeating pressure, (KPa) 

Pµ                                         Permeate viscosity, (Kg/m.s) 

X1, x2, …, x6                                              Input variables 

{pi, qi,…, ki, ri }                             Consequent parameters 

{ σ,*x }                                              Premise parameters 

A
1 
,B

1
, …, C1                                                    Antecedent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Comparison between values of desired and ANFIS, 

MLP, and FIS predicted for: (a) flux and (b) total hydraulic 

resistance, respectively. 

 

Abbreviations 

ANFIS                  Adaptive neuro-fuzzy inference system 

MLP                                                 Multilayer perceptron 

ANN                                            Artificial neural network 

FISs                                              Fuzzy inference systems 

MWCO                            Molecular weight cut-off (KDa) 

pH                                                                            Acidity 

TMP                                 Transmembrane pressure (KPa) 

TEMP                                                     Temperature (°C) 

Time                                                                  Time (min) 

RMSE                                            Root mean square-error 

MSE                                                       Mean square-error 

LSE                                                        Least square-error 
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