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ABSTRACT: An efficient, facile, and green synthesis of 4H-pyran and 4H-chromene derivatives  

in Magnetized Distilled Water (MDW) has been described. In this work, magnetized distilled water 

was applied as a green-promoting medium for a practical, and environmentally benign three-

component reaction of an aldehyde, ethyl acetoacetate/resorcinol, and malononitrile in the presence 

of potassium carbonate as a catalyst at 70 ºC. This method offers the advantages of simplicity, low 

costs, high reaction yields, being green, and no need for any organic solvent. Also, the chemical 

structures of the synthesized new compounds were confirmed using Nuclear Magnetic Resonance (NMR), 

and InfraRed (IR) spectroscopy analysis.  
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INTRODUCTION 

4H-Pyrans and 4H-chromenes have a broad range of 

applications. They exhibit various therapeutic applications 

such as antitumor [1], antibacterial [2-4], anti-HIV [5], 

antifungal [6], and anti-inflammatory [7]. Moreover, they 

are often used in pigments [8], laser dyes [9], and 

fluorescence markers [10]. Recently, various catalysts 

such as piperidine [11], NaOH [12], Na2CO3 [13], Et3N [14], 

KSF [15], TiCl4 [16], InCl3 [17], MgO [18], K3PO4 [19], 

sodium malonate [20], and hetero-polyacid [21] are reported 

for the synthesis of 4H-Pyrans and 4H-chromenes, but all 

these protocols suffer from the drawbacks like the 

restricted substrate scope, the use of organic solvents and 

toxic metals, low achievement, and a tedious workup 

process. Therefore, it is necessary to develop a green and 

simple procedure for the preparation of these compounds. 

Among the commonly used solvents in organic 

synthesis, water is nontoxic, and it is the most economical,  

 

 

 

most abundant, safest, and most environmentally friendly 

medium. Sometimes water shows higher reactivity and 

selectivity compared to the other conventional organic solvents 

because of its strong hydrogen-bonding ability. These 

characteristics allow water to act as a solvent, or a reactant, 

making it different from conventional organic solvents [22]. 

The water magnetization technique is an easy one 

without extra energy consumption when a permanent 

external magnet is utilized. Such a magnet can be installed 

on a previously established water tube system, resulting  

in no additional energy requirement for water magnetization. 

The applied magnetic field directly affects the structure of 

water such as density, penetration, specific heat, refractive 

index, electric dipole moment, vaporization enthalpy, 

surface tension, and viscosity change compared with  

non-magnetic water [23-27]. Two primary methods of 

making MDW has been reported. The first method  
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Scheme 1: Synthesis of pyrans and chromenes in MDW. 

 

is passing water through a magnetic field, and the second 

is using a permanent magnet near a particular volume of water.  

In continuation to our recent research on MDW, 

including the synthesis of pyrano [2, 3-c] pyrazoles[28], 

pyrazolopyranopyrimidines [29], pyrano [2, 3‐d] 

pyrimidines [30], and 9H-diuracilopyrans pyrans [31],  

we report here an eco-friendly and economical approach  

to a three-component reaction towards an easy synthesis  

of pyrans and chromenes in MDW (Scheme 1). 

 

EXPERIMENTAL SECTION 

General 

The reagents and solvents used were supplied from 

Merck, Fluka, or Aldrich. Melting points were determined 

using an electro-thermal C14500 apparatus. The reaction 

progress and the purity of compounds were monitored 

using TLC analytical silica gel plates (Merck 60 F250). 

The 1H NMR (300 MHz) spectra were obtained using  

a Bruker Advance DPX-250 FT-NMR spectrometer.  

The chemical shift values were given as δ values against 

tetramethylsilane (TMS), as the internal standard, and  

the J values were given in Hz. IR spectra were recorded  

on a Shimadzu IR-435 grating spectrophotometer. 

 

Preparation of MDW   

MDW has been prepared using our previous report 

[30]. Deionized water (5 mL) was first put in a test tube, 

which was then put between two neodymium magnets 

NdFeB (10 cm × 5 cm × 4 cm) with a magnetic field  

of 0.8 T for 15 min. The test tube was subsequently removed 

from the instrument and used for the reaction (Fig. 1).  

 

General procedure for the preparation of pyrans (4a-4g) 

and chromenes (6a-6h). 

An aldehyde (1.0 mmol), ethyl acetoacetate/resorcinol 

(1.0 mmol), malononitrile (1.0 mmol), and K2CO3 (1.0 mmol) 

were stirred at 70 ºC in 3 mL of MDW. After completion 

(as indicated by TLC), the crude product formed was separated, 

washed with cold water and the products were purified  

by recrystallization using EtOH.  

 

Ethyl 6-amino-5-cyano-2-methyl-4-phenyl-4H-pyran-3-

carboxylate (4a) 

FT-IR (KBr): 3410, 3330, 2200, 1691 cm-1; 1H NMR 

(DMSO-d6) δ: 1.05 (t, 3H, J=7.2 Hz, CH3), 2.34 (s, 3H, 

CH3), 4.04 (m, 2H, CH2), 4.32 (s, 1H, CH), 6.94 (s, 2H, 

NH2), 7.26 (m, 3H, ArH), 7.36 (m, 2H, ArH). 

 

Ethyl 6-amino-5-cyano-2-methyl-4-(4-chlorophenyl)-

4H-pyran-3-carboxylate (4b) 

FT-IR (KBr): 3410, 3331, 2192, 1693 cm-1; 1H NMR 

(DMSO-d6) δ: 1.07 (t, 3H, J=7.2 Hz, CH3), 3.38 (s, 3H, 

CH3), 4.04 (m, 2H, CH2), 4.33 (s, 1H, CH), 6.93 (s, 2H, NH2), 

7.20 (d, 2H, J=8.7 Hz, ArH), 7.39 (d, 2H, J=8.4 Hz, ArH).  

 

Ethyl 6-amino-5-cyano-2-methyl-4-(4-bromophenyl)-

4H-pyran-3-carboxylate (4c) 

FT-IR (KBr): 3408, 3329, 2194, 1689 cm-1; 1H NMR 

(DMSO-d6) δ: 1.05 (t, 3H, J=7.2 Hz, CH3), 2.33 (s, 3H, CH3), 

4.02 (m, 2H, CH2), 4.31 (s, 1H, CH), 6.99 (s, 2H, NH2), 7.13 

(d, 2H, J=8.4 Hz, ArH), 7.53 (d, 2H, J=8.4 Hz, ArH). 

 

Ethyl 6-amino-5-cyano-2-methyl-4-(4-nitrophenyl)-4H-

pyran-3-carboxylate (4d) 

FT-IR (KBr): 3406, 3331, 2197, 1693, 1530 cm-1; 1H 

NMR (DMSO-d6) δ: 1.08 (t, 3H, J=7.2 Hz, CH3), 2.37 (s, 

3H, CH3), 4.03 (q, 2H, J=6.9 Hz, CH2), 4.49 (s, 1H, CH), 

7.11 (s, 2H, NH2), 7.46 (d, 2H, J=8.7 Hz, ArH), 8.23 (d, 

2H, J=8.7 Hz, ArH). 

 

Ethyl 6-amino-5-cyano-2-methyl-4-(3-nitrophenyl)-4H-

pyran-3-carboxylate (4e) 

FT-IR (KBr): 3402, 3328, 2191, 1692, 1531 cm-1;  
1H NMR (DMSO-d6) δ: 1.04 (t, 3H, J=7.2 Hz, CH3),  

 



Iran. J. Chem. Chem. Eng. Green Synthesis of 4H-Pyrans and 4H-Chromenes ... Vol. 41, No. 3, 2023 

 

Review Article                                                                                                                                                                    855 

2.39 (s, 3H, CH3), 4.03 (m, 2H, CH2), 4.54 (s, 1H, CH), 

7.12 (s, 2H, NH2), 7.70 (m, 1H, ArH), 7.99 (s, 1H, ArH), 

8.13 (d, 2H, J=6.6 Hz, ArH). 

 

Ethyl 6-amino-5-cyano-2-methyl-4-(2-nitrophenyl)-4H-

pyran-3-carboxylate (4f) 

FT-IR (KBr): 3401, 3331, 2189, 1691, 1534 cm-1; 1H 

NMR (DMSO-d6) δ: 0.93 (t, 3H, J=7.2 Hz, CH3), 2.35 (s, 

3H, CH3), 3.93 (q, 2H, J=6.9 Hz, CH2), 5.03 (s, 1H, CH), 

7.10 (s, 2H, NH2), 7.56 (m, 2H, ArH), 7.75 (d, 1H, ArH), 

7.87 (d, 1H, J=8.4 Hz, ArH). 

 

Ethyl 6-amino-5-cyano-2-methyl-4-(2,6-dichlorophenyl)- 

4H-pyran-3-carboxylate (4g) 

FT-IR (KBr): 3400, 3330, 2190, 1680 cm-1; 1H NMR 

(DMSO-d6) δ: 0.96 (t, 3H, J=7.2 Hz, CH3), 2.28 (s, 3H, 

CH3), 4.01 (m, 2H, CH2), 5.37 (s, 1H, CH), 7.03 (s, 2H, 

NH2), 7.33 (t, 1H, J=7.2 Hz, ArH), 7.46 (d, 1H, J=7.2 Hz, 

ArH), 7.57 (d, 1H, J=7.2 Hz, ArH). 

 

2-Amino-3-cyano-7-hydroxy-4-phenyl-4H-chromene (6a) 

FT-IR (KBr): 3460, 3338, 2193, 1649 cm-1; 1H NMR 

(DMSO-d6) δ: 4.63 (s, 1H, CH), 6.43 (d, 1H, J=2.4 Hz, 

ArH), 6.51 (dd, 1H, JA=8.4Hz, JB=2.4 Hz, ArH), 6.80 (d, 

1H, J=2.4 Hz, ArH), 6.88 (s, 2H, NH2), 7.24 (m, 3H, ArH), 

7.34 (m, 2H, ArH), 9.72 (s, 1H, OH). 

 

2-Amino-3-cyano -7-hydroxy-4- (4-chlorophenyl)-4H-

chromene (6b) 

FT-IR (KBr): 3463, 3339, 2190, 1650 cm-1; 1H NMR 

(DMSO-d6) δ: 4.68 (s, 1H, CH), 6.43(d, 1H, J=2.4 Hz, 

ArH), 6.51 (dd, 1H, JA=8.4Hz, JB=2.4 Hz, ArH), 6.81 (d, 

1H, J=8.4 Hz, ArH), 6.93 (s, 2H, NH2), 7.22 (d, 2H, J=1.2 

Hz, ArH), 7.40 (d, 2H, J=2.4 Hz, ArH), 9.75 (s, 1H, OH). 

 

2-Amino-3-cyano-7-hydroxy-4-(4-nitrophenyl)-4H-

chromene (6c) 

FT-IR (KBr): 3460, 3340, 2190, 1645, 1530 cm-1; 1H 

NMR (DMSO-d6) δ: 4.88 (s, 1H, CH), 6.41 (d, 1H, J=2.1 Hz, 

ArH), 6.52 (dd, 1H, JA=8.4Hz, JB =2.4 Hz, ArH), 6.84 (d, 1H, 

J=8.4 Hz, ArH), 7.05 (s, 2H, NH2), 7.47 (d, 2H, J=8.7 Hz, 

ArH), 8.23 (d, 2H, J=8.7 Hz, ArH), 9.88 (s, 1H, OH). 

 

2-Amino-3-cyano-7-hydroxy-4-(3-nitrophenyl)-4H-

chromene (6d) 

FT-IR (KBr): 3465, 3340, 2191, 1643, 1533 cm-1;  
1H NMR (DMSO-d6) δ: 4.93 (s, 1H, CH), 6.46 (d, 1H, 

J=2.1 Hz, ArH), 6.54 (dd, 1H, JA=8.4Hz, JB =2.4 Hz, ArH), 

6.87 (d, 1H, J=8.4 Hz, ArH), 7.05 (s, 2H, NH2), 7.70 (m, 

2H, ArH), 8.04 (d, 1H, J=1.8 Hz, ArH), 8.13 (m, 1H, 

ArH), 9.81 (s, 1H, OH). 

 

2-Amino-3-cyano -7-hydroxy-4- (2,4-dichlorophenyl)-

4H-chromene (6e) 

FT-IR (KBr): 3463, 3340, 2190, 1640 cm-1; 1H NMR 

(DMSO-d6) δ: 5.15 (s, 1H, CH), 6.43 (d, 1H, J=2.4 Hz, 

ArH), 6.52 (dd, 1H, JA=8.4Hz, JB=2.1 Hz, ArH), 6.74 (d, 

1H, J=8.4 Hz, ArH), 6.99 (s, 2H, NH2), 7.23 (d, 1H, J=8.1 

Hz, ArH), 7.43 (d, J=2.4 Hz, 1H, ArH), 7.60 (d, 1H, J=2.1 

Hz, ArH), 9.83 (s, 1H, OH). 

 

2-Amino-3-cyano -7-hydroxy-4- (2-nitrophenyl)-4H-

chromene (6f) 

FT-IR (KBr): 3465, 3341, 2192, 1645, 1531 cm-1; 1H 

NMR (DMSO-d6) δ: 5.17 (s, 1H, CH), 6.46 (d, 1H, J=2.4 

Hz, ArH), 6.54 (dd, 1H, JA=8.4Hz, JB =2.4 Hz, ArH), 6.82 

(d, 1H, J=8.4 Hz, ArH), 7.03 (s, 2H, NH2), 7.33 (d, 1H, 

J=1.5 Hz, ArH), 7.51 (t, 1H, J=6.9 Hz, ArH), 7.69 (t, 1H, 

J=6.9 Hz, ArH), 7.88 (d, 1H, J=8.1 Hz, ArH), 9.85 (s, 1H, 

OH). 

 

2-Amino-3-cyano-7-hydroxy-4-(2,6-dichlorophenyl)-

4H-chromene (6g) 

FT-IR (KBr): 3464, 3340, 2191, 1642 cm-1; 1H NMR 

(DMSO-d6) δ: 2.27 (s, 3H, CH3), 4.58 (s, 1H, CH), 6.41 (d, 

1H, J=1.8 Hz, ArH), 6.50 (dd, 1H, JA=8.4Hz, JB =2.4 Hz, 

ArH), 6.80 (d, 1H, J=8.4 Hz, ArH), 6.85 (s, 2H, NH2), 7.07 

(d, 2H, J=8.1 Hz, ArH), 7.45 (d, 2H, J=8.1 Hz, ArH), 9.70 

(s, 1H, OH). 

 

RESULTS AND DISCUSSION 

The MDW was prepared according to previously 

reported [30]. The deionized water (5 mL) was put  

in a test tube, which was then put in a magnetic field 

(0.8 T) at different times. The tube was subsequently 

removed from the instrument and used for the reaction 

(Fig. 1). 

We selected 1.0 mmol of benzaldehyde (1a), 1.0 

mmol of malononitrile (2), and 1 mmol of ethyl 

acetoacetate (3), as substrates in the model 

multicomponent reaction. Initially, various solvents 

including H2O, EtOH, MeOH, CH3CN, DMF, and 

THF were screened to identify an optimized condition 

(Table 1).  
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Table 1: Optimization experimentsa. 

 

                                            1a                               2                        3                                                                               4a 

Entry Solvent Base Temperature (ºC) Yieldb (%) 

1 H2O - 50 40 

2 EtOH - 50 20 

3 MeOH - 50 15 

4 CH3CN - 50 - 

5 DMF - 50 25 

6 THF - 50 5 

7 MDW - 50 70 

8 MDW K2CO3 50 85 

9 MDW KOH 50 80 

10 MDW Na2CO3 50 75 

11 MDW NaOH 50 73 

12 MDW DABCO 50 60 

13 MDW Et3N 50 45 

14 MDW DIPEA 50 35 

15c MDW K2CO3 90 95 

16d MDW K2CO3 90 77 

17 MDW K2CO3 70 95 

18 MDW K2CO3 90 96 

a) Reaction conditions: benzaldehyde 1a (1.0 mmol), malononitrile 2 (1.0 mmol), ethyl acetoacetate 3 (1.0 mmol), reaction time (3 h), solvent (3 mL), 

base (1 mmol), magnetization time (15 min).     b) Isolated yield.     c) K2CO3 (2 mmol).      d) K2CO3 (0.5 mmol).  

 

 

Fig. 1. The pilot for solvent magnetization apparatus . 

As shown in Table 1, product (4a) is formed in low 

yields (Table 1, entries 1-6). Significantly, an 

improvement in the product yield was observed when 

the reaction was carried out in MDW (Table 1, entry 

7). The efficacy of various parameters such as bases, 

and reaction temperature was tested. The role of bases 

including K2CO3, KOH, Na2CO3, NaOH, DABCO, 

triethylamine, and diisopropylethylamine (DIPEA) was 

investigated in the model reaction (Table 1, entries 8-14). 

According to Table 1, the reaction led to a higher yield  

in the presence of K2CO3 (Table 1, entry 8). Increasing  

the amount of K2CO3 to 2.0 mmol was not necessary and 

helpful for the reaction (Table 1, entry 15). When 0.5 mmol 

of K2CO3 was used, product 4a was obtained with only 

77% yield (Table 1, entry 16). In addition, when the 

reaction was performed at various temperatures ranging  
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Table 2: Reaction times, melting points, and yields of 4H-pyran 4a. 

 
                                   1                              2                          3                                                                                  4 

5 

 
1e 

4.5 

 
4e 

94 183-185 187-188 [33] 

6 

 
1f 

3 

 
4f 

90 176-178 179-181 [33] 

7 

 
1g 

5 

 
4g 

82 168-170 --- 

aReaction conditions: aldehyde 1 (1.0 mmol), malononitrile 2 (1.1 mmol), ethyl acetoacetate 3 (1.0 mmol), K2CO3 (1.0 mmol),  temperature (70 °C), 

magnetization time (15 min), MDW (3 mL).  
bIsolated yield. 

 

from 50 °C to 90 °C, an excellent product yield (95%)  

was obtained at 70 °C (Table 1, entry 17).  

The multicomponent reaction has been performed  

in MDW for six aldehydes to investigate the generality  

of the procedure for this reaction (Table 2).  

According to Table 2, the reactions of various 

aldehydes, lead to products (4a-4g) in high-to-excellent 

yields (82-95%). The Unsubstituted, benzaldehyde was 

converted into excellent yield of product (4a) (Table 2, 

entry 1). Notably, the reactions of aryl aldehydes with 

electron-withdrawing functionalities like 4-nitro and  

3-nitro with active methylene compounds was found  

to form excellent yields of products (Table 2, entries 4,  

and 5). Moreover, a sterically hindered aldehyde such as 

2-nitrobenzaldehyde, and 2,6-dichlorobenzaldeyhed also 

produced high yields of the products (Table 2, entries 6, 

and 7).  

The applicability of MDW has also been studied  

for the preparation of 4H-chromenes using the 

optimized reaction conditions (Table 1, entry 17), and 

the results are illustrated in Table 3. A variety of 

aldehydes underwent the reaction to give the 

corresponding 4H-chromenes in high-to-excellent 

yields (83-96%). Various aldehydes including  

4-nitrobenzaldehyde, 3-nitrobenzaldehyde, and 2,4-

dichlorobenzaldehyde react to give 4H-chromenes in excellent 

products (Table 3, entries 3-5). However, the product yield 

was slightly decreased with 2- nitrobenzaldehyde (Table 3, 

entry 6). Finally, the aldehyde-bearing methyl group gave 

the corresponding 4H-chromene (6g) an excellent yield of 

about 94% (Table 3, entry 7). 

Table 4 compares the efficiency of MDW as a green 

solvent to some reported methods in synthesis of 4H-pyran 

(4a) and 4H-chromene (6a). It shows that this method  
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Table 3. Synthesis of 4H-chromenes 6a. 

 
                                          1                              2                           5                                                                     6 

Entry Ar Time (h) Product Yieldb (%) m.p. (ºC) m.p. (ºC) [Ref.] 

1 

 
1a 

3 

 
6a 

96 233-235 235-236 [32] 

2 

 
1b 

4 

 
6b 

90 223-225 223-225 [34] 

3 

 
1c 

3 

 
6c 

90 168-170 170-172 [32] 

4 

 
1d 

4 

 
6d 

96 166-168 169-170 [32] 

5 

 
1e 

5 

 
6e 

92 257-259 256-258 [35] 

6 

 
1f 

4 

 
6f 

83 160-162 164-166 [36] 

 

 

 
 

6g 

4.5 

 
6g 

85 184-186 186-187 [32] 

a) Reaction conditions: An aldehyde 1 (1.0 mmol), malononitrile 2 (1.1 mmol), resorcinol 5 (1.0 mmol), K2CO3 (1.0 mmol), MDW (3 mL), magnetization 

time (15 min), temperature (70 °C).       b) Isolated yield. 
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Table 4: Comparison between this work and the priorly reported for the synthesis of 4H-pyran (4a) and 4H-chromene (6a). 

Product Catalyst Conditions Yield (%) [Ref.] 

4a KF-Al2O3 EtOH, r.t, 3 h 77 [37] 

4a Fe3O4@GA@ Isinglass EtOH, reflux, 50 min 88 [38] 

4a [bmim]OH Neat, 60 ºC, 45 min 90 [39] 

4a Fe3O4@gC3N4 EtOH, 60 ºC, 3 h 80 [40] 

4a K2CO3/LD30 EtOH:H2O, ultrasound, 50 ºC, 25 min 95 [41] 

4a [2-aemim] [PF6] H2O, MW, 100 ºC, 3 min 87 [42] 

4a NH4OAc Neat, grinding, r.t, 15 min 78 [43] 

4a K2CO3 MDW, 70 ºC, 3 h 95 This work 

6a Lemon Fruit Shell Ash Microwave, 8 min 84 [44] 

6a polyoxometalate@Dysprosium EtOH, H2O, reflux, 25 min 88 [45] 

6a Fe3O4@SiO2-nanocatalyst EtOH, H2O, ultrasound, r.t, 10 min 95 [46] 

6a CTABr Ultrasound, 110 ºC, 6 h 80 [47] 

6a Hydrotalcite H2O, 60 ºC, 5 h 90 [48] 

6a Polyamine EtOH, H2O, reflux, 3 h 86 [49] 

6a Tungstic acid-SBA-15 H2O, 100 ºC, 12 h 86 [50] 

6a MIL-101(Cr)–SO3H. H2O, 100 ºC, 6 h 80 [36] 

6a L-Proline EtOH, H2O, 60 ºC, 1.5 h 95 [51] 

6a K2CO3 MDW, 70 ºC, 3 h 96 [This work] 

 

has high efficiency in reaction conditions for synthesis of 

4H-pyran (4a) and 4H-chromene (6a). 

 

CONCLUSIONS 

In conclusion, an efficient, green, and convenient 

method was proposed for the one-pot three-component 

synthesis of pyrans and chromenes in MDW. Here, we 

used MDW as an inexpensive and ‘green’ solvent for the 

reaction medium. Eco-friendly, low costs, column-free 

workup condition, and high-to-excellent yields make this 

present procedure an interesting alternative to multistep 

approaches 
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