## APENDIX

The governing partial differential equations of our problem are:
$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$
$u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=v \frac{\partial^{2} u}{\partial y^{2}}-\frac{\sigma_{c} B_{o}^{2}}{\rho_{f}} u-\frac{v}{k_{o}} u$
$u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}=\alpha \frac{\partial^{2} T}{\partial y^{2}}+\tau\left\{D_{b} \frac{\partial c}{\partial y} \frac{\partial T}{\partial y}+D_{t}\left(\frac{\partial T}{\partial y}\right)^{2}\right\}$
$u \frac{\partial c}{\partial x}+v \frac{\partial c}{\partial y}=D_{b} \frac{\partial^{2} c}{\partial y^{2}}+\frac{D_{t}}{T_{f}} \frac{\partial^{2} T}{\partial y^{2}}$
$\mathrm{u} \frac{\partial \mathrm{n}}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial \mathrm{n}}{\partial \mathrm{y}}+\frac{\mathrm{b}_{\mathrm{ch}} \mathrm{W}_{\mathrm{cs}}}{\left(\mathrm{c}_{\mathrm{w}}-\mathrm{c}_{\mathrm{f}}\right)}\left\{\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{n} \frac{\partial \mathrm{c}}{\partial \mathrm{y}}\right)\right\}=\mathrm{D}_{\mathrm{m}} \frac{\partial^{2} \mathrm{n}}{\partial \mathrm{y}^{2}}$
To transform the above system of equations into Ordinary ones, we will utilize appropriate transformations given above in (8).
Since in terms of stream function, the velocity components have form:
$u=\frac{\partial \psi}{\partial y}, v=-\frac{\partial \psi}{\partial \mathrm{x}}$.
$u=\frac{\partial \psi}{\partial y}=\left(\frac{a_{o}}{v}\right)^{\frac{1}{2}} x f^{\prime}\left(a_{o} v\right)^{\frac{1}{2}}=a_{o} x^{\prime}, v=-\frac{\partial \psi}{\partial x}=-\left(a_{o} v\right)^{\frac{1}{2}} f$
By taking derivatives, we obtain:
$\frac{\partial u}{\partial x}=a_{o} f^{\prime} \Rightarrow \frac{\partial^{2} u}{\partial x^{2}}=0, \frac{\partial u}{\partial y}=\left(\frac{a_{0}}{v}\right)^{1 / 2} a_{o} x f^{\prime \prime} \Rightarrow \frac{\partial^{2} u}{\partial y^{2}}=\frac{a_{o}^{2}}{v} x f^{\prime \prime \prime}$
And
$\frac{\partial v}{\partial y}=-a_{0}{ }{ }^{\prime}$
Now, by putting values of derivatives in Eq. (1), it is identically satisfied.
In the similar manner, Substitution of values of derivatives in Eq. (2) yields the form:

$$
\begin{aligned}
& a_{o} x f^{\prime}\left(a_{o} f^{\prime}\right)+\left(-\left(a_{o} v\right)^{1 / 2} f\right) \frac{a_{o}^{3 / 2}}{v^{1 / 2}} x f^{\prime \prime}= \\
& v\left(\frac{a_{o}^{2}}{v} x f^{\prime \prime \prime}\right)-\frac{\sigma_{c} B_{o}^{2}}{\rho_{\mathrm{fl}}} a_{o} x f^{\prime}-\frac{v}{k_{o}} a_{o} x f^{\prime}
\end{aligned}
$$

By simplifying above equation, we have obtained Eq. (9):

$$
\mathrm{f}^{\prime \prime \prime}+\mathrm{ff}^{\prime \prime}-\mathrm{f}^{\prime 2}-\mathrm{M}\left(\mathrm{f}^{\prime}\right)-\gamma\left(\mathrm{f}^{\prime}\right)=0
$$

Similarly, by attaining derivatives and substituting their values, we have converted Eqs. (3)-(5) into Eqs. (10)- (12) respectively.

