Decolorization of Methyl Orange (As a Model Azo Dye) by the Newly Discovered Bacillus Sp

Document Type : Research Article


1 Department of Biology, Science Faculty, Tehran University, P.O. Box: 14155-6455, Tehran, I. R. IRAN

2 Institute of Biochemistry and Biophysics, Tehran University, P.O. Box: 13145-1384, Tehran, I. R. IRAN


A bacterial strain (strain PS) was isolated from the textile effluents carrying Serilene Black BNFS® (C.I. Disp. Blk. Mix) disperse dye. The isolate was able to decolorize the dye without the need for any exogenous carbon source. Full sequencing of its 16S rRNA indicated that Bacillus sp strain PS is related to Bacillus cereus groups.  Silica- gel-thin layer chromatography of Serilene black dye showed that its main component is a blue dye. FT- IR analysis of this blue fraction showed that its structure corresponds to azoic dyes. Thus Bacillus sp, strain PS was used to decolorize methyl orange as a model azo dye, which it did after 2 days of incubation under aerobic conditions on a shaker incubator (30°C, 140 rpm). Comparing TLC and GC-MS analyses with the authentic sample main showed that its decomposition product is N, N-dimethyl 1, 4- phenylene diamine. Experiments with N, N-dimethyl 1, 4-phenylene diamine as a co-substrate in mineral medium showed that this component disappeared after 7 day incubation. These observations confirm that the decomposition of Serilene dye occurs in a manner similar to that of methyl orange.


Main Subjects

[1] Heinfling, A., Martinez, M. J., Martinez, A. T., Bergbauer, M. and Szewzyk, U., Applied and Environmental Microbiology, 64 (8), 2788 (1998).
[2] Seong, J. K. and Makoto, S., Applied and Environ-mental Microbiology, 65 (3), 1029 (1999).
[3] Abadulla, E., Tzanov, T., Costa, S., Robra, K., Cavaco, A. and Gubitz, G., Applied and Environmental Microbiology, 66 (8), 3357 (2000).
[4] Chivukula, M., Spadaro, T. and Renganathan, V., Biochemistry, 34, 7765 (1995).
[5] Cripps, C., Bumpus, A. and Aust,  S.  D.,  Applied and Environmental Microbiology, 56, 1114 (1990).
[6] Spadaro, J., Gold, M. and Renganatan, V., Applied and Environmental Microbiology, 58, 2397 (1992).
[7] Pagga, U., Brown, D., Chemosphere, 15, 479 (1986).
[8] Rogalski, J., Lundell,  T., Leonowicz,  A.  and Hatakka, A., Acta Microbiol Polonica, 40, 221 (1991).
[9] Karapinar,  K., Karagi,  F.,  Mcmullan,  G. and Marchant, R., Biotechnology Lett., 22, 1179 (2000).
[10] Arslan, I., Journal of Hazardous Materials, B 85, 229(2001).
[11] Norteman, B., Bauumgarten, H., Rast, G. and Kanackmuss, H., Applied and Environmental Microbiology, 52, 1195 (1986).
[12] Nigam, P., Mcmullan, G., Banat,   I. and Marchant, R., Biotechnol Lett., 18, 117 (1996).
[13] Pourbabaee,  A. A., Malekzadeh, F., Sarbolouki, M.N. and Najafi, F., Biotechnology and Bio-engineering, Accepted, 8 August (2005).
[14] Pasti,  G.,  Paszczynski,  S., Goszcynski,  D. and Crawfored, R., Applied and Environment  Micro-biology, 58 (11), 3605 (1992).
[15] Silk, B., Matthias, C., Martina, L., Andreas, S. and Hans, J., Applied and Environmental  Microbiology, 64 (6), 2315 (1998).
[16] Chung, K., Stevens, S. and Cerniglia, C., Crit. Rev. Microbiol., 18, 175 (1992).
[17] Kulla, H., Klausener, F., Meyer, U., Ludeke, B. and Leisinger, T., Arch. Microbiol., 57 (135), 1 (1991).
[18] Huag, W., Schmidt, A., Nortemann, B., Hempel, D., Stolz, A. and Knackmuss, H., Applied and Environ-mental Microbiology, 57 (11), 3144 (1991).