Kinetic Mechanism Reduction Using Genetic Algorithms, Case Study on H2/O2 Reaction

Document Type : Research Article


Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-9654 Tehran, I.R. IRAN


For large and complex reacting systems, computational efficiency becomes a critical issue in process simulation, optimization and model-based control. Mechanism simplification is often a necessity to improve computational speed. We present a novel approach to simplification of reaction networks that formulates the model reduction problem as an optimization problem and solves it using genetic algorithm (GA).The aim of simplification kinetics modeling is to derive the simplest reaction system, which retains the essential features of the full system. Numerical results for H2/O2 combustion reaction mechanism illustrate the potential and proficiency of this approach.


Main Subjects

[1] Tasng, W., Hampsone, R.F., Chemical Kinetics Data Base for Combustion Chemistry: Part 1. Methane and Related Compounds, J. Phys. Chem. Ref. Data, 15, 1087 (1986).
[2] Vora, N., Daoutidis, Nonlinear Model Reduction of Chemical Reaction System,AIChE  J., 47, 2320 (2001).
[3] Haario,  H., Kalachev,  L., Salmi,  T.,  Lehton, J., Asymptotic Analysis of Chemical Reactions,Chemical Engineering Science,  54,  1143 (1999).
[4] Brown, N.J., Gouping, L., Koszykowski, L., Mecha-nism Reduction via Principle Component Analysis, Int. J. Chem. Kinet., 29, 393(1997).
[5] Lam, S.H., Goussis, D.A., The CSP Method for Simplifying Kinetics, Int. J. Chem. Kinet., 26, 461 (1994).
[6] Mass, U., Pope, S.B., Simplifying Chemical Kinetics: Intrinsic Low Dimensional Manifolds in Composition Space,Combustion and Flame, 88, 239(1992).
[7] Petzold, L., Zhu, W., Model Reduction for Chemical Kinetics: an Optimization Approach , AIChE  J., 45, 869 (1999).
[8] Edwards, K., Edgar, T. F., Manousiothakis, V. I., Kinetic Model Reduction Using Genetic Algorithms,  Comp. Chem. Eng., 22, 239 (1998).
[9] Edwards,  K., Edgar, T. F., Manousiothakis, V.I., Reaction Mechanism Simplification Using Mixed IntegerProgramming, Comp. Chem. Eng., 24,  67(2000).
[10] Sirdeshpande, A.R., Ierapetritou, M.G.,  Androulakis, P., Design of Flexible Reduction Kinetic Mechanisms, AIChE  J., 47, 2461 (2001).
[11] Edgar, T. F., Himmelblau, D. M.,  Lasdon, L. S, "Optimization of Chemical Process", 2nd. Ed., Mcgraw-Hill Book Company, (2001).
[12] Adjiman, C.S., Androulakis, I.P.,  Floudas, C.A., Global Optimization of Mixed-Integer Nonlinear Problems, AIChE  J., 46, 2461(2000).
[13] Androulakis, I. P., Kinetic  Mechanism  Reduction Based on an Integer Programming Approach, AIChE J., 46, 361 (2000).
[14] Holland, J., "Adaptation in Natural and Artificial Systems", The University of Michigan Press, Ann Arbor (1975).
[15] Michalewicz, Z., "Genetic  Algorithms + Data Struc-tures = Evolution Programs", AI Series, Springer- Verlag, NY (1994).
[16] Frenklach, M., Wang, H., Yu, G.T., Goldberg, M., Bowman, C.T., Hansen, R.K., Davidson, D.F., Chang, E.J., Smith, G.P., Golden, D.M., Gardiner, W.C., Lissians, K.V., GRI-Mech Version 1.2, Nov. 1995, http\\