Purification of Yard-Glass Shaped Boron Nitride Nanotubes

Document Type : Research Article


1 College of Science, Liaoning Technical University, Fuxin 123000, CHINA

2 Liaoning Nonferrous Exploration and Research Institute, Shenyang 110013, CHINA

3 School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai, 264209, CHINA

4 College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, CHINA


An efficient method for purification of Yard-Glass Shaped Boron Nitride NanoTubes (YG-BNNTs) fabricated via a Chemical Vapour Reaction (CVR) route has been developed. Impurities including carbon, Boron Nitride (BN), and Fe species in the pristine YG-BNNT sample are removed by a combined physical and chemical procedure which involves ultrasonication, high temperature oxidation, hot-water washing and acid washing. The samples at different stages of the purification process are monitored using X-Ray powder Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The results reveal that the carbon and BN impurities could be easily eliminated.However, the catalyst nanoparticles (Fe3C) encaged in the tubes prove to be effectively shielded from oxidation and acid corrosion. Although the content of catalyst nanoparticles could be satisfactorily reduced to about 1.0 wt% by prolonged ultrasonication and acid washing, a small number of such magnetic nanoparticles are still left in the final purified YG-BNNTs. The YG-BNNTs exhibit a typical ferromagnetic behaviour even after a longtime oxidizing and acid washing treatment, indicating thatthey could be potentially used for harsh-environment magnetic devices.  


Main Subjects

[1] Chopra N.G., Luyken R.J., Cherrey K., Crespi V.H., Cohen M.L., Louie S.G., Zettl A., Boron Nitride Nanotubes. Science, 269  p. 966 (1995).
[2] Golberg D., Bando Y., Tang C., Zhi C., . Boron Nitride Nanotubes. Adv. Mater. 19, p. 2413 (2007).
[3] Suryavanshi A.P., Yu M.F., Wen J., Tang C., Bando Y., Elastic Modulus and Resonance Behavior of Boron Nitride Nanotubes, App. Phys. Lett., 84, p. 2527 (2004).
[4] Chang C W, Fennimore A M, Afanasiev A, Okawa D, Ikuno T, Garcia H, Li D, Majumdar A, Zettl A., Isotope Effect on the Thermal Conductivity of Boron Nitride Nanotubes. Phys. Rev. Lett., 97, 085901-1-4 (2006).
[5] Zhi C, Bando Y, Tang C, Xie R, Sekiguchi T and Golberg D., Perfectly Dissolved Boron Nitride Nanotubes Due to Polymer Wrapping. J. Am. Chem. Soc., 127 , p. 15996 (2005).
[6] Blase X, Rubio A, Louie S G and Cohen M.L., Stability and Band Gap Constancy of Boron Nitride Nanotubes, Europhys. Lett., 28, p. 335 (1994).
[7] Tang C., Bando Y., Effect of BN Coatings on Oxidation Resistance and Field Emission of SiC Nanowires,Appl. Phys. Lett., 83, p. 659 (2003).
[8] Zhi C., Bando Y.,  Terao T., Tang C., Kuwahara H., Golberg D., Towards Thermoconductive, Electrically Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers. Adv. Funct. Mater., 19, p. 1857 (2009).
[9] Arenal R Peňa F., Stéphan O., Walls M., Tencé M., Loiseau A., Colliex C., Extending the Analysis of EELS Spectrum-imaging Data, from Elemental to Bond Mapping in Complex Nanostructures, Ultramicroscopy, 109, p.32 (2008).
[10] Li Y., Dorozhkin P.S., Bando Y., Golberg D., Controllable Modification of SiC Nanowires Encapsulated in BN Nanotubes. Adv. Mater., 17, p. 545 (2005).
[12] Chen X., Wu P., Rousseas M., Okawa D., Gartner Z., Zettl A., Bertozzi C.R., Boron Nitride Nanotubes Are Noncytotoxic and Can Be Functionalized for Interaction with Proteins and Cells, J. Am. Chem. Soc., 131, p. 890 (2009).
[13] Bai X., Golberg D., Bando Y., Zhi C., Tang C., Mitome M., Kurashima K.,  Deformation-Driven Electrical Transport of Individual Boron Nitride Nanotubes,  Nano Lett., 7, p. 632 (2007).
[14] Arenal R., Stephan O., Cochon J., Loiseau A., Root-Growth Mechanism for Single-Walled Boron Nitride Nanotubes in Laser Vaporization Technique, J. Am. Chem. Soc., 129, p. 16183 (2007).
[15] Chen Z.G., Zou J., Li F., Liu G., Tang D.M., Li D., Liu C., Ma X., Cheng H.M., Lu G.Q., Zhang Z., Growth of Magnetic Yard-Glass Shaped Boron Nitride Nanotubes with Periodic Iron Nanoparticles, Adv. Funct. Mater., 17, p. 3371 (2007).
[17] Bechelany M., Bernard S., Brioude A., Cornu D., Stadelmann P., Charcosset C., Fiaty K., Miele P., Synthesis of Boron Nitride Nanotubes by a Template-Assisted Polymer Thermolysis Process, J. Phys. Chem., C 111, p. 13378 (2007).
[18] Chen H., Chen Y., Yu J., Williams J.S., Purification of Boron Nitride Nanotubes, Chem. Phys. Lett., 425, p. 315 (2006).
[19] Vieira S.M.C., Carroll D.L., Purification of Boron Nitride Multiwalled Nanotubes, J. Nanosci. Nanotechnol., 7, p. 3318 (2007).
[20] Zhi C., Bando Y., Tang C., Honda S., Sato K., Kuwahara H., Golberg D., Purification of Boron Nitride Nanotubes through Polymer Wrapping, J. Phys. Chem., B 110, p. 1525 (2006).
[21] Ramachandran P.V., Gagare P.D., Preparation of Ammonia Borane in High Yield and Purity, Methanolysis, and Regeneration,  Inorg. Chem., 46, p. 7810 (2007).
[22] Guimon C., Gonbeau D., Pfister-Guillouzo G., Dugne O., Guette A., Naslain R., Lahaye M., XPS Study of BN Thin Films Deposited by CVD on Sic Plane Substrates, Surf. Interface Anal., 16, p. 440 (1990).
[23] Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D., Handbook of X-Ray Photoelectron Spectroscopy (Eden Prairie, MN: Perkin-Elmer Corporation) pp. 38-39 (1992).
[24] Lu A.H., Salabas E.L., Schüth F., Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed., 46, p. 1222 (2007).
[25] David B., Schneeweiss O., Mashlan M., Šantavá E., Morjan I., Low-Temperature Magnetic Properties of Fe3C/Iron Oxide Nanocomposite, J. Magn. Magn. Mater., 316, p. 422 (2007).
[26] Sajitha E.P., Prasad V., Subramanyam S.V., Mishra A.K., Sarkar S., Bansal C., Size-Dependent Magnetic Properties of Iron Carbide Nanoparticles Embedded in a Carbon Matrix, J. Phys.: Condens. Matter, 19, p. 046214 (2007).