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ABSTRACT: In this study, the Nonrandom Two-Liquid model (NRTL) was used to calculate the isoactivity 

equations from the experimental liquid-liquid equilibrium (LLE) data. Additionally, the original Differential 

Evolution method (DE_rand1) and its modifications involve the self-adaptive control parameters diff erential 

evolution (JDE), the adaptive differential evolution with optional external archive (JADE), and the composite 

differential evolution (CODE) have been used to estimate the binary interaction parameters. Randomization of 

regression parameters has been used to minimize the fitting objective function. Furthermore, the effectiveness of 

these optimization methods was tested in a quaternary system of water, acetic acid, 50 % dichloromethane (DCM), 

and 50 % methyl isobutyl ketone (MIBK) at 301.15 K. Moreover, the optimization process assessment was carried 

out by a regression analysis using Root Mean Square Deviation (RMSD), mean, standard deviation, and the 

duration of execution time spent on both the activity and the fractional objective functions. Root Mean Square 

Deviation (RMSD) results that were less than or equal to 0.0107 demonstrated the effectiveness of Differential 

Evolution methods in estimating NRTL parameters for this specific system. Finally, the original method 

(DE_rand1) was found to be the most efficient approach among all its variations. 
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INTRODUCTION 

Liquid-liquid extraction is a highly effective technique for separating substances or liquid mixtures and is 

also called solvent extraction [1–4]. This technique is used in different domains such as industrial processes, 

pharmaceutical chemistry, biomedical, mineral chemistry, metallurgy fields, and biology [5–9]. Additionally, the 

ability of this method is evaluated by the distribution coefficients (𝐷𝑖) and the separation factor (S) [10, 12]. The 

distribution coefficient assesses the dispersion of elements between equilibrium phases, whereas the separation 

factor evaluates the effectiveness of this technique  [13]. Consequently, these parameters are essential for 

determining the exact elements that influence solvent extraction, such as the properties of the solvent and the 

solute, etc [13, 14]. 

Liquid-Liquid Equilibrium (LLE) is a fundamental for extraction applications and plays a significant role 

in refining the modeling and optimization of industrial processes. Therefore, determining it precisely is essential 

to developing reliable and predictive thermodynamic approaches [15, 16]. Thus, it is imperative to conduct these 

calculations properly and accurately to prevent shortcomings, mistakes, and ambiguities during process 

development. There are two techniques commonly employed for calculating LLE. They are the Gibbs energy 

minimization technique and the equation-solving isoactivity technique [17, 18]. Furthermore, the isoactivity 

method is widely used in LLE calculations involving activity coefficient models due to its simplicity [19].  

The activity coefficient models are mainly based on the development of excess Gibbs-energy equations 

[19, 20]. The activity coefficient is a fundamental parameter in thermodynamics. It is defined to describe the 

behavior of real solutions deviating from an ideal state in a chemical mixture [21, 22]. The capacity of these 

models can be divided into two categories, namely predictive models and semi-predictive models [22]. The second 

approach necessitates experimental data, such as Wilson [20], Universal Quasi-Chemical (UNIQUAC) [19] and 

the Nonrandom Two-Liquid model (NRTL) [23], which was widely employed for estimating and predicting LLE, 

as reported in previous studies [24, 25]. 

The calculations of liquid-liquid equilibrium data (LLE) and studying phase behaviors use both 

deterministic and stochastic optimization methods [26]. On the one hand, the deterministic optimization 

techniques [26] like Nelder-Mead (NM) and Quasi-Newton (QN) are non-random and use given initial points 

when executing their algorithms to determine solutions. These methods are accurate for local optima and 

computationally efficient. However, because of their deterministic character, these methods may not be adequate 

to obtain global optimization for multi-modal problems [26]. 

On the other hand, stochastic optimization methods, which are also called metaheuristics, are a type of 

single-objective optimization (SOO) method. They use random numbers, sequences and probabilistic elements in 

their search strategies to find the global optimal [26]. In each iteration or objective function evaluation, this 

approach manipulates either a single solution or a group of solutions [26]. The Genetic Algorithms (GA) [27, 28], 

Particle Swarm Optimization (PSO) [29, 31], Differential Evolution (DE) [32], and its derivatives (the self-

adaptive control parameters differential evolution (JDE), the adaptive differential evolution with optional external 

archive (JADE), and the composite differential evolution (CODE)) are widely used due to their ability to tackle a 

wide range of complex optimization problems efficiently and reliably identify global optima despite their time-

consuming execution [33–36].  



 

 

Each method has preferable conditions for application, e.g. Particle Swarm Optimization (PSO) is known 

for its fast convergence rate and simplicity. Meanwhile, the Genetic Algorithm (GA) is often used for problems 

with a large search space and can deal with multiple objectives. Differential Evolution (DE) is known for handling 

difficult and high-dimensional problems. Selecting the optimization method depends on several factors, such as 

the specific problem being solved, the execution time [37], the calculated Root Mean Square Deviation (RMSD) 

[38], and the dependency on initial population positions [39, 40]. Several factors can influence the efficiency of 

these algorithms in terms of execution time [37], the nature of the problem, the number of iterations, and the 

hardware used [39, 40]. Initially, the execution time can also vary depending on the implementation of the 

algorithm. The DE generally outperformed the other algorithms in terms of execution time [41, 42]. 

The Root Mean Square Deviation (RMSD) is a mathematical metric that was used in several works [43] 

to assess the fit between the experimental data and the calculated data from the NRTL model. Bacha et al. [43], 

Zheng Li et al. [44], and Timedjeghdine et al. [45] used the PSO and GA methods for LLE calculation of ternary 

and quaternary systems. As a result, both the GA and PSO methods have been able to accurately estimate the 

NRTL model parameters. According to the literature [17, 18, 46], a comparative study was conducted between 

these two methods, and the results indicated that PSO outperformed GA. Then, Warisa Wisittipanich et al.  [47] 

and Hasan Ozcan [37] utilized the DE and GA methods. The DE approach performs better than the GA method. 

Because it is less affected by parameter choices, converges more quickly, and performs well when dealing with 

continuous variables. In accordance with the literature [48], this approach facilitates successful search space 

exploration, which in many cases yields better optimization results. Zhang et al. [49] presented a study that 

evaluated and compared the performance of DE and PSO algorithms in solving optimization problems and 

concluded that DE outperformed PSO in most of the tested functions.  

Moreover, the common issue with optimization algorithms is their dependence on the initial population 

positions because the quality of the solutions that are found relies heavily on this initial configuration [42]. Genetic 

algorithms (GA) and particle swarm optimization (PSO) are particularly vulnerable since they use the initial 

population to generate new solutions [50]. Conversely, differential evolution (DE) is the least sensitive method 

because it uses two population initialization methods including, pre-regressed and random methods 

(randomization procedure) [44, 51]. The first procedure executes the optimization algorithm and its initialization 

is random [52]. The second procedure executes the objective function in terms of activity (𝑂𝐹𝑎) in the first step 

and its initialization is random. Then, it uses the objective function in terms of mole fraction (𝑂𝐹𝑥) in the second 

step, along with the initialization from the previous step [44]. In summary, DE method performance significantly 

surpasses the other algorithms evaluated in prior studies [42, 48]. 

One of the most significant issues in improving the prediction of LLE is accurately representing the 

system's phase behavior.  In light of that, this work aims to study the behavior of the quaternary system, which 

includes water, acetic acid, and a mixture of dichloromethane (DCM) and methyl isobutyl ketone (MIBK) at a 

temperature of 301.5 K [53] by using the DE standard (DE_rand1) and its variants (JDE, JADE, and CODE). 

Additionally, the phase diagrams will be represented to illustrate the feasibility of the calculated data in relation 

to the experimental results. 



 

 

Furthermore, the NRTL model was employed to model and correlate the studied system based on 

experimental LLE data. The selection of the DE method was based on a prior comparison demonstrating its 

superiority over PSO and GA in terms of dependency on initial population positions, Root Mean Square Deviation 

(RMSD), and execution time. Notably, previous studies have not utilized DE techniques for a quaternary system 

in LLE calculation and modeling, highlighting the novelty of this approach in studying quaternary system behavior 

and obtaining optimal NRTL parameters. The DE methods calculations rely on the performance of isoactivity 

equations as numerical solutions. The purpose of this concept is to make improvements in the optimization process 

to generate high-quality data. 

Moreover, the achieved outcomes underwent optimization by carefully selecting an appropriate objective 

function, commonly expressed in terms of both the activity objective function (OFa) and the fractional objective 

function (OFx). This work was conducted based on the observation that previous studies did not indicate the 

significance of the objective function selection in calculating and modeling Liquid-Liquid Equilibrium (LLE). 

The primary focus of the study is on examining how the population size, range of interaction parameters, and 

number of iterations influence the value of the objective function (fitness). Besides, these regression parameters 

were determined using the randomization procedure. The purpose is to find the optimal values for executing the 

DE algorithm.  

Finally, the calculated results for the DE approaches were evaluated according to the regression analysis 

of estimated binary interaction parameters such as the Root Mean Square Deviation (RMSD), the mean (m), and 

the standard deviation (std) [54]. This comparative analysis aimed to identify the most effective optimization 

method for calculating and modeling the Liquid-Liquid Equilibrium quaternary system.  

THERMODYNAMICS OF LIQUID-LIQUID EQUILIBRIUM CONDITIONS 

The isoactivity equations of elements for both phases are used for the calculation and modeling of the LLE 

of quaternary systems containing water, acetic acid, and a mixture of dichloromethane (DCM) and methyl isobutyl 

ketone (MIBK) at a temperature of 301.5 K. It is represented by the following set of Eqs from (1) to (7). 

At equilibrium, the Eq. 1 illustrated  an equality of pressures, temperatures, and chemical potentials in each 

phase, as follows: [55]: 

{
𝑃𝑃1 = 𝑃𝑃2

𝑇𝑃1  =  𝑇𝑃2

μ𝑖
𝑃1  =  μ𝑖

𝑃2
                                (1) 

Where: 𝑃, 𝑇, and μ represent the pressures (atm), the temperature (K), and the chemical potentials of component 

i (J/mol), respectively.  

The chemical potential plays a crucial role in studying LLE equilibrium conditions [17, 56]. The chemical 

potential of a component is assumed to be constant during the equilibrium process according to the isoactivity 

approach [18]. Furthermore, there exists a correlation between the chemical potential and the chemical activity, 

which is represented in the Eq. 2 [57]: 

{
μi

P1  =  R. T. ln ai
P1

μi
P2  =  R. T. ln ai

P2                 (2) 



 

 

Where: 𝑎𝑖 is the chemical activity of component i (a dimensionless quantity). The superscripts refer to two phases. 

R indicates the universal gas constant (cal K−1 mol−1). 

The following Eq. (3) can be concluded from the two Eqs. (1) and (2), as follows [55]: 

𝑎𝑖
𝑃1  = 𝑎𝑖

𝑃2                                 (3) 

Eq. 3 presents the basis for phase equilibrium computations when component activities in both phases are 

equal. In addition, the concept of chemical activity is also indicated by the relation between the activity coefficient 

and mole fraction, as shown in the Eq. 4 [55]: 

 𝑎𝑖  = 𝑥𝑖 . 𝛾𝑖                                 (4) 

According to  the Eqs. from (1) to (4) [58]: 

𝑥𝑖
𝑃1 𝛾𝑖

𝑃1 =  𝑥𝑖
𝑃2 𝛾𝑖

𝑃2                   (5) 

Moreover, the set of Eqs. from (1) to (5) requires material balance constraints by adding total element 

quantities, hence [44]:  

𝑛𝑖
𝑃1 + 𝑛𝑖

𝑃2  = 𝑛𝑖                         (6) 

Where: 𝑛𝑖
𝑃1 𝑎𝑛𝑑 𝑛𝑖

𝑃2  refer to the mole number of constituent i. 𝑛𝑖  represent the total quantity of constituents i in 

the mixture (mole). The superscripts refer to two phases respectively.   

In a system that contains N elements and two phases, there are a total of 2N variables (the mole fractions 

of each element in each phase). The mass balance constraints for both phases are determined after adjusting the 

concentrations of (N - 2) elements in one phase, as follows [3]:  

{
∑ 𝑥𝑖

𝑃1𝑁
𝑖=1 = 1

∑ 𝑥𝑖
𝑃2𝑁

𝑖=1 = 1
                          (7) 

The normalization of the mole fraction requires two formulas for each element in the equilibrium of the 

system according to Eq. (7). As a result, there are (N + 2) variables with (N + 2) equations. These equations 

involve N isoactivity equations and two constraint equations [58]. Then, the unknown amounts can be determined 

according to the solving of isoactivity equations when the number of unknowns is similar to the number of 

equations [56].  

Finally, these isoactivity equations are used for the calculation and prediction of LLE when using the NRTL 

model. This numerical solution performs when an optimization method such as DE is applied to find optimal 

solutions. 

NRTL MODEL 

In 1964, Wilson [20] proposed a model showing that local concentrations around molecules differ from 

the overall concentration. This model has two adjustable parameters (𝐴𝑗𝑖  𝑎𝑛𝑑 𝐴𝑖𝑗) [56]. However, the Wilson 

model was unable to predict LLE [59]. After four years, Renon et al. developed another model to be able to predict 

LLE and called it the non-random two-liquid (NRTL) model [23]. This model is based on Wilson's local 

composition theory (as represented in Fig. 1) and Scott's two-liquid solution theory [20]. 



 

 

 

Fig. 1: Local composition theory of Wilson. 

The relation between the composition (𝑥𝑖) and activity coefficient (𝛾𝑖) of element i is expressed in the 

following formula [60]: 

ln𝛾𝑖 =
∑  𝑁

𝑗=1 𝜏𝑗𝑖 .𝐺𝑗𝑖 .𝑥𝑗

∑  𝑁
𝑘=1 𝐺𝑘𝑖.𝑥𝑘

+ ∑  𝑁
𝑗=1

𝐺𝑖𝑗.𝑥𝑗

∑  𝑁
𝑘=1 𝐺𝑘𝑗.𝑥𝑘

(𝜏𝑖𝑗 −
∑  𝑁

𝑙=1 𝜏𝑙𝑗.𝐺𝑙𝑗.𝑥𝑙

∑  𝑁
𝑘=1 𝐺𝑘𝑗.𝑥𝑘

)               (8) 

The interaction parameters can be defined as follows [4], [23]:  

τij =  
𝐴𝑖𝑗

𝑅.𝑇
                                         (9) 

𝐺𝑗𝑖 = 𝑒𝑥𝑝(−𝛼𝑗𝑖 . 𝜏𝑗𝑖)                      (10) 

Where: 𝜏𝑖𝑗  ,  𝐺𝑖𝑗  , 𝑎𝑛𝑑  𝐴𝑖𝑗   are the energy interaction parameters (𝐴 ≠ 𝐴𝑖𝑗).  α𝑗𝑖  refers to non-random solution 

dispersion parameter. 𝑅 is the gas constant (cal 𝐾−1 𝑚𝑜𝑙−1).  𝑇 denotes the temperature of the mixture liquid (K). 

This model has three parameters for each pair of constituents 𝑖 − 𝑗. The two binary molecular energy 

interaction parameters are the same, according to Wilson’s model. They are determined by using the isoactivity 

equations after the estimated data and the coefficient activity model are defined for both phases. Additionally, a 

new parameter presents the non-random distribution of molecules according to the second theory (theory of Scott) 

on which it is based, which is named the non-randomness factor or the non-random solution dispersion 

parameter α𝑗𝑖 and α𝑖𝑗 . Its value ranges between 0.20 and 0.47 [17], with  α𝑗𝑖 =  α𝑖𝑗  [3]. The non-randomness 

factor value of 0.20 is commonly assigned to LLE [18]. In comparison to other activity models [23], this factor 

gives it more flexibility, making it possible to show the phase behavior of more mixtures in liquid phases. 

Although, the primary drawback of the NRTL model is the significant correlation that exists between its 

two parameters [61]. However, the NRTL model has the ability to reflect experimental equilibrium features with 

a comparable level of accuracy [62]. In this study, this model was used for LLE calculations and modeling of the 

quaternary system involving water, acetic acid, and a mixed solvent (50% MIBK with 50% DCM) at a temperature 

of 301.15 K.  

DIFFERENTIAL EVOLUTION METHODS 

Differential Evolution (DE) is a stochastic optimization technique within evolutionary calculation that uses 

a population of potential solutions. In this study, it was used to calculate LLE for the selected quaternary system.  



 

 

The population is guided towards better solutions in the search range using three main operators, which 

are mutation, crossover, and selection. Storn and Price introduced this technique in 1995 [32] to minimize non-

differentiable and potentially nonlinear continuous functions.  

The performance of the DE standard algorithm was based on two steps (as shown in Fig. 2). The first step 

is initialization, in which the population is formed at random. In the second step, called evolution, the created 

population continues through three operators such as mutation, crossover, and selection (as represented in Fig. 3), 

which are repeated until a termination criterion is satisfied [32]. 

 

Fig. 2: Flowchart of the Differential Evolution (DE) Algorithm. 

Mutation operation 

In mutation operation of the DE standard, a new individual is created through three randomly selected and 

is named a mutant vector as shown in Fig 3 (a) and using Eq. 11 [32]:  

Begin 

Random initialization of population 

Fitness evaluation 

Mutation 

Crossover 

Selection 

For each individual 

Until Condition 

End 

Parameters initialization 

Yes  

  

No 

No 

  

Yes  



 

 

DE_rand1: 𝑉 = 𝑋𝑟1
+ 𝐹(𝑋𝑟2

− 𝑋𝑟3
)                                             (11) 

In the literature, the DE standard has other mutation equations including DE/best/1, DE/rand/2, DE/best/2, 

DE/current-to-best/1, and DE/current-to-rand/1, such as: 

1- DE/best/1: 𝑉 = 𝑋𝑏𝑒𝑠𝑡 + 𝐹(𝑋𝑟1
− 𝑋𝑟2

);  

2- DE/rand/2: 𝑉 = 𝑋𝑟1
+ 𝐹(𝑋𝑟2

− 𝑋𝑟3
) + 𝐹(𝑋𝑟4

− 𝑋𝑟5
);  

3- DE/best/2: 𝑉 = 𝑋𝑏𝑒𝑠𝑡 + 𝐹(𝑋𝑟1
− 𝑋𝑟2

)  + 𝐹(𝑋𝑟3
− 𝑋𝑟4

);  

4- DE/current − to − best/1: 𝑉 = 𝑋𝑖 + 𝐹(𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖)  + 𝐹(𝑋𝑟1
− 𝑋𝑟2

); 

5- DE/current − to − rand/1: V = 𝑋𝑖 + 𝑟𝑎𝑛𝑑(𝑋𝑟1
− 𝑋𝑖)  + 𝐹(𝑋𝑟2

− 𝑋𝑟3
). 

Where: 𝑉 indicates the mutant vector. 𝑋𝑖  refers to the current vector. 𝑟1, 𝑟2, 𝑟3, 𝑟4 𝑎𝑛𝑑 𝑟5 denote the random 

integers, 𝑟1 ≠  𝑟2 ≠  𝑟3 ≠ 𝑟4 ≠ 𝑟5  ≠ 𝑖, with   𝑖 ∈ {1,2, … , 𝑁𝑝} and 𝑁𝑝 represents the population size. 𝑋𝑏𝑒𝑠𝑡  refers 

to the best individual vector, or each individual that has the best objective function value at the present generation 

in the population. 𝐹 means the mutation factor ∈ [0,2] which controls the differential vector (𝑋𝑟2
− 𝑋𝑟3

).  

 

Fig. 3: illustration of the essential operators (selection, crossover, and mutation) used in the DE standard algorithm. 

Crossover operation 

The crossover operation aims to increase the population variety and is depicted in Fig 3 (b). Additionally, 

its formula refers to the combination between the mutated vector 𝑉 = (𝑉1,  𝑉2, 𝑉3, … 𝑉𝐷) with the current vector 

𝑋𝑖 = (𝑋1𝑖 ,  𝑋2𝑖 , 𝑋3𝑖 , … 𝑋𝐷𝑖),  to provide the trial individual (trial vector) presented as follows [32]:  

𝑈𝑗 = {
𝑉𝑗          if (𝑟𝑎𝑛𝑑 < 𝐶𝑅) or (𝑗 = 𝑖𝑟𝑎𝑛𝑑(𝐷))

𝑋𝑗𝑖         𝑖𝑓(𝑟𝑎𝑛𝑑 ≥ 𝐶𝑅)
                      (12) 

Where: 𝑈 denotes the trial individual. rand refers to a function that generates random numbers between 0 and 

1. 𝐶𝑅 indicates the crossover factor ∈ [0,1]. 𝐷 is the dimension of the search space. 𝑋𝑗𝑖   represente the 𝑗𝑡ℎ position  



 

 

in the current vector 𝑋𝑖  with 𝑗 ∈ {1,2, … , 𝐷}. irand (D) means a function that generates random numbers between 

1 and D. 

Select operation    

The purpose of select operation is to choose the best option from the current vector (𝑋𝑖) and trial individual 

(𝑈) [32]. This operation was represented in Fig 3 (c). Moreover, its concept states the 𝑋𝑖 new value is set to the 

𝑈, if  𝑈 provides the objective function value that is lower than the prior value; Else, its value remains the same. 

Furthermore, it is defined as: 

𝑋𝑖
𝑡+1 = {

𝑈     𝑖𝑓 𝑓(𝑈) < 𝑓(𝑋𝑖
𝑡)

𝑋𝑖
𝑡                                        

                                         (13) 

Where: 𝑋𝑖
𝑡 refers to the current vector in the iteration t. 

DE’s control parameters sitting 

The next important point in the DE algorithm is the control parameters. These parameters include 

population size (𝑁𝑝), the mutation factor (𝐹), Furthermore, selecting these parameters to get better outcomes is 

relatively easy and greatly affects optimization performance that one needs to adjust. The fundamental instructions 

of parameters allow for dealing with DE, which is extremely simple and considered one of DE's key advantages. 

In addition, the user has to choose a maximum number of generations or iterations [32]. 

Population size  

A population is a group of individuals that represent the solution to the issue that the DE algorithm is 

attempting to solve. Each individual contains a set of genes as the space search dimensionality. In this study, the 

number of genes equals 2× the number of compounds (as illustrated in Fig. 4). The initial population is randomly 

selected and should include the entire area of search [32]. The population size (𝑁𝑝) is a fixed value during the 

minimization operation. The optimum range is between 5 to 20 times the total number of decision variables [26]. 

Therefore, the 𝑁𝑝 strongly influences the algorithm's capacity for exploration. Also, it must also be considered to 

enable the algorithm to search in the multi-dimensional range if there are problems with an abundance of 

dimensions. 

 

Fig. 4: Structure of Population. 

Mutation factor 

The mutation factor (𝐹) is also called the scaling factor and the differential weight due to its function which 

represents scaling the difference vector and manages its amplification. In addition, the desirable range is between 

0 and 2. The lower values of F will result in lower mutation step values, which will delay the algorithm's 



 

 

convergence. While the high F values enable exploration less difficult, they could also lead to a local optimum. 

As a result, the value must be both sufficiently small to encourage local exploration and big enough to preserve 

variety. For instance, choosing 𝐹 = 0.5 is often the first perfect option. As well as, the values of 𝐹 are rarely 

effective when they are less than 0.4 or bigger than 1 [26, 32]. Increasing the values of 𝐹 and 𝑁𝑝, or one of them, 

is necessary in cases where the population converges before the usual time.  

Crossover probability 

The crossover probability (𝐶𝑅) is also known as the crossover control parameter. It has an impact on the 

variety of DE because it determines how many components will alter. In addition, its value ranges between ]0,1]. 

Greater 𝐶𝑅 values will result in more variance being introduced into the new population, which will promote 

exploration. Nevertheless, an appropriate value must be determined to guarantee local and global search 

capabilities. The value of 0.1 is an excellent starting point. However, a large 𝐶𝑅  frequently accelerates 

convergence. Therefore, it is desirable to attempt 𝐶𝑅 = 0.9 𝑜𝑟 𝐶𝑅 = 1.0 first to determine whether a speedy 

solution is feasible [26, 32].  

Variations of Differential Evolution  

The DE implementation fundamentally relies on two parts. The first is its trial individual (𝑈) generation 

strategy (the three operators), and the second is its control factors [35]. Then, there is indeed a rising concern 

about creating new differential evolution (DE) modifications to improve optimization outcomes. This study 

examined the execution of the DE standard algorithm (DE_rand1) and its variants (JDE, JADE, and CODE) and 

addressed the challenges associated with constrained structural optimization problems in the LLE calculations 

and regression using the NRTL model. There are as follows: 

- Rainer Storn et al. proposed the standard differential evolution (DE_rand1) in 1997 [32]. 

- Janez Brest et al. suggested the self-adaptive control parameter differential evolution (JDE) in 2006 [33]. 

- Jingqiao Zhang et al. presented the adaptive differential evolution with an optional external archive 

(JADE) in 2009 [34]. 

- Yong Wang et al. introduced composite differential evolution (CODE) in 2011 [35]. 

Table 1 compares DE_rand1, JDE, JADE, and CODE methods based on the structure of the algorithm, the 

mutation operation, the mutation factor, and the chance of a crossover. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 1: A comparison between the DE standard (DE_rand1) and its variants (JDE, JADE, and CODE) 

Method Description Refrence 

DE_rand1 Algorithm: The standard DE algorithm. 

Mutation operation: DE_rand1:𝑽 = 𝑿𝒓𝟏
+ 𝑭(𝑿𝒓𝟐

− 𝑿𝒓𝟑
) 

Mutation factor (𝑭) and the crossover probability (𝑪𝑹): 𝑪𝑹 = [𝟎, 𝟏], 𝑭 = [𝟎, 𝟐] 

[32] 

JDE Algorithm: Adapting the control parameters 𝑭𝒊 and 𝑪𝑹𝒊 associated with each individual.  

Mutation operation : DE_rand1: 𝑽 = 𝑿𝒓𝟏
+ 𝑭(𝑿𝒓𝟐

− 𝑿𝒓𝟑
) 

Mutation factor (𝑭) and Crossover probability (𝑪𝑹): 

𝑭𝒊,𝑮+𝟏 = {
𝑭𝒍 + 𝒓𝒂𝒏𝒅𝟏 ∗ 𝑭𝒖,  if  rand 𝟐 < 𝝉𝟏

𝑭𝒊,𝑮,  otherwise 

𝑪𝑹𝒊,𝑮+𝟏 = {
𝒓𝒂𝒏𝒅𝟑,  if  rand 𝟒 < 𝝉𝟐

𝑪𝑹𝒊,𝑮,  otherwise 

 

Where: 𝑭𝒍 = 𝟎. 𝟏, 𝑭𝒖 = 𝟎. 𝟗. 𝒓𝒂𝒏𝒅𝒊 represents uniform random values. 𝝉𝟏 and 𝝉𝟐 indicate probabilities to adjust 

factors F and 𝑪𝑹, respectively.  

[33] 

JADE Algorithm: A novel mutation technique called "DE/current-to-pbest" with an optional external archive and 

automatically changing control parameters. 

The original "DE/current-to-best" is generalized into the DE/current-to-pbest, and the optional archive operation 

uses past data to identify the direction of advancement. Both strategies increase convergence efficiency and variety 

in the population. 

Mutation operation: DE/current-to-pbest:𝑽 = 𝑿𝒊 + 𝑭𝒊(𝑿𝒃𝒆𝒔𝒕
𝒑

− 𝑿𝒊)  + 𝑭𝒊(𝑿𝒓𝟏
− �̃�𝒓𝟐

) 

Where: 𝑿𝒃𝒆𝒔𝒕
𝒑

 refers to randomly selected as one of the top 100 p% individuals in the current population with p ∈ (0, 

1] 

while �̃�𝒓𝟐
 indicates  randomly selected from the union, P ∪ A, P is as the current population and A is as the set of 

archived inferior solutions. 

Mutation factor (𝑭) and the crossover probability (𝑪𝑹): 

𝝁𝑪𝑹 = 𝟎. 𝟓, 𝝁𝑭 = 𝟎. 𝟓 

𝑪𝑹𝒊 = 𝒓𝒂𝒏𝒅𝒏𝒊(𝝁𝑪𝑹, 𝟎. 𝟏),                   𝑭𝒊 = 𝒓𝒂𝒏𝒅𝒄𝒊 (𝝁𝑭, 𝟎. 𝟏) 

𝝁𝑭 = (𝟏 − 𝒄) ⋅ 𝝁𝑭 + 𝒄 ⋅ 𝒎𝒆𝒂𝒏𝑳(𝑺𝑭),     𝝁𝑪𝑹 = (𝟏 − 𝒄) ⋅ 𝝁𝑪𝑹 + 𝒄 ⋅ 𝒎𝒆𝒂𝒏𝑨 (𝑺𝑪𝑹) 

𝒎𝒆𝒂𝒏𝑳 (𝑺𝑭) =
∑  𝑭∈𝑺𝑭

𝑭𝟐

∑  𝑭∈𝑺𝑭
𝑭

 

Where: c represents a positive constant between 0 and 1. meanL (·) is the Lehmer mean. meanA(·) is the usual 

arithmetic mean. 𝑺𝑭 notes the set of all successful mutation factors 𝑭𝒊 in generation g. 𝑺𝑪𝑹 indicates the set of all 

successful crossover probabilities 𝑪𝑹𝒊 at generation g. 𝝁𝑭 𝒂𝒏𝒅 𝝁𝑪𝑹 are location parameter 

[34] 

CODE Algorithm: This method utilizes the three control parameters sitting and three trial vector-generating operations. It 

creates trial vectors by combining them at random. 

Mutation operation 

1- DE_rand1: 𝑽 = 𝑿𝒓𝟏
+ 𝑭(𝑿𝒓𝟐

− 𝑿𝒓𝟑
); 

2- DE/rand/2: 𝑽 = 𝑿𝒓𝟏
+ 𝑭(𝑿𝒓𝟐

− 𝑿𝒓𝟑
) + 𝑭(𝑿𝒓𝟒

− 𝑿𝒓𝟓
);  

3- DE/current-to-rand/1:𝑽 = 𝑿𝒊 + 𝒓𝒂𝒏𝒅(𝑿𝒓𝟏
− 𝑿𝒊)  + 𝑭(𝑿𝒓𝟐

− 𝑿𝒓𝟑
). 

Mutation factor (𝑭) and the crossover probability (𝑪𝑹): 

1-  [F = 1.0, 𝑪𝑹 = 0.1] 

2- [F = 1.0, 𝑪𝑹 = 0.9] 

3- [F = 0.8, 𝑪𝑹 = 0.2] 

[35] 



 

 

Table 1 presented a comparison between the DE standard and its variants. The modification in the DE 

algorithm uses adaptive and self-adaptive control factors, and some DE variants employ the optimal vector for 

generating mutant vectors, whereas others utilize several vectors [63]. Then, the determination of the correct 

control parameter values can be time-consuming and difficult, especially for certain complex tasks. These DE 

variants have proven advantageous in enhancing vector positioning, mitigating stagnation issues, and accelerating 

convergence [63]. 

The DE standard method (DE_rand1) and its variants (JDE, JADE, and CODE) were applied to find 

optimal solutions based on the performance of numerical solutions (isoactivity equations) in the calculation and 

modeling of LLE for the studied system when using the NRTL. 

NRTL ESTIMATION PARAMETERS FROM LLE 

In order to determine the estimated data and the coefficient activity for both phases (𝑃1 𝑎𝑛𝑑 𝑃2)  in LLE 

calculations and modeling, the isoactivity equations and DE methods were used to find the best fit for the objective 

function. Therefore, the NRTL parameters depend on the type of optimization method and objective function 

chosen [17, 55].  

Basically, the objective functions have two essential strategies including the minimization of activity 

differences and the minimization of the distances between experimental data and calculated data [55]. 

Furthermore, the last strategy aims to minimize the sum of squared errors between the experimental and model-

predicted values. Then, it has two different types, namely mole fraction objective function (or fractional) and 

activity objective function [17, 55]. 

Activity objective function 

The activity objective function (𝑂𝐹𝑎) is a measure used to assess the quality of correlation for various 

applications of phase equilibrium calculations and modeling. It is expressed as [44, 55]: 

𝑂𝐹𝑎 = ∑ ∑ 𝜎𝑖𝑘
𝑀
𝑘=1

3
𝑖=1                                              (14) 

With 𝜎𝑖𝑘 denotes the intermediate variable or the residual of an equation and can be expressed as [44]: 

𝜎𝑖𝑘   =  {

(𝑥𝑖𝑘
𝑃1 𝛾𝑖𝑘

𝑃1)

(𝑥𝑖𝑘
𝑃2 𝛾𝑖𝑘

𝑃2)
− 1,       𝑖𝑓 

(𝑥𝑖𝑘
𝑃1 𝛾𝑖𝑘

𝑃1)

(𝑥𝑖𝑘
𝑃2 𝛾𝑖𝑘

𝑃2)
≥ 1

(𝑥𝑖𝑘
𝑃2 𝛾𝑖𝑘

𝑃2)

(𝑥𝑖𝑘
𝑃1 𝛾𝑖𝑘

𝑃1)
− 1,                           𝑒𝑙𝑠𝑒

            (15) 

Mole fraction objective function   

The minimization of the activity objective function does not ensure a minimization of the distances 

between the experimental data and the estimated data. This limitation is a severe weakness for any objective 

function based on the isoactivity equations. The mole fraction objective functions (𝑂𝐹𝑥) describe the goal and 

accurately predict the experimental tie lines for phase equilibria in a short amount of time [55], which is written 

as follows [15, 64]: 

𝑂𝐹𝑥 = ∑ ∑ ∑ (𝑥𝑖𝑘𝑒𝑥𝑝
𝑝

− 𝑥𝑖𝑘𝑐𝑎𝑙
𝑝

 )2𝑀
𝑘=1

2
𝑝=1

3
𝑖=1                (16) 

Where: 𝑖, 𝑝, 𝑎𝑛𝑑 𝑘 represent the constituent, phase, and the number of tie lines, respectively. The experimental 

and estimated mole fractions of constituents are 𝑥𝑖𝑘𝑒𝑥𝑝
𝑝

 𝑎𝑛𝑑 𝑥𝑖𝑘𝑐𝑎𝑙
𝑝

, respectively.  

The weakness of 𝑂𝐹𝑥 is that the execution costs more time than the first type due to solving isoactivity 

equations for the calculation of the fraction mole 𝑥𝑖𝑘𝑐𝑎𝑙
𝑝

 [44]. 



 

 

Root Mean Square Deviation 

The Root Mean Square Deviation (𝑅𝑀𝑆𝐷) [38] is a statistical measure used in various fields, including 

data analysis, modeling, and optimization. In this context, RMSD is utilized to examine the quality of the 

correlation or goodness of fit between two data sets in the studied system. These data represent the experimental 

and estimated LLE data obtained from the NRTL model [65]. It is also applied to evaluate how well the NRTL 

model and the DE methods perform in the LLE calculation. It is typically expressed as follows [4, 64]:   

𝑅𝑀𝑆𝐷 = [
𝐹 

𝑛𝑝.  𝑘.  𝑛𝑐
]

1/2

                            (17) 

Where: F represents 𝑂𝐹𝑥 𝑎𝑛𝑑 𝑂𝐹𝑎 . 𝑛𝑝, 𝑘, 𝑛𝑐 denote the phases’ number, the number of tie lines, and the elements’ 

number, respectively. 

According to the outcomes of this metric, a lower RMSD value indicates a closer match. Therefore, the 

NRTL model and the DE methods were successfully employed to describe the phase behavior for LLE prediction. 

On the other hand, a higher RMSD suggests that the regression may need further refinement or limitations in its 

ability. 

Mean and Standard deviation 

The mean and standard deviation [66] are statistical methods. In this work, they are used as benchmarks 

for evaluating the outcomes of LLE calculation and modeling. 

Firstly, the mean (𝑚) represents the average magnitude of errors or deviations between the estimated values 

obtained from the NRTL model and the experimental values. Therefore, it is the average of the RMSD absolute 

value. It is written as [66]:  

𝑚 =
1

𝑁𝑅
∑ 𝑅𝑀𝑆𝐷𝑖𝑡

𝑁𝑅
𝑖𝑡=1                               (18) 

Regarding the evaluation of this measure, a lower mean value indicates that the LLE calculation and 

modeling have a smaller average error in predicting the desired outcomes. Therefore, there is a good fit between 

the experimental data and the predicted values of the NRTL model. 

Then, the standard deviation (𝑠𝑡𝑑) is a valuable metric and refers to the square root of the variance between 

RMSD values as follows [66]: 

𝑠𝑡𝑑 = √
1

𝑁𝑅−1
∑ [𝑅𝑀𝑆𝐷𝑖𝑡 − 𝑚]2𝑁𝑅

𝑖𝑡=1              (19) 

Where: NR is the repetition’s number, RMSDit indicates the value of RMSD in the itth repetition, and it refers to 

the iteration rank. 

Moreover, the standard deviation was used for assessing the reliability and robustness of the NRTL model 

performance with the DE methods, especially when analyzing the consistency of predictions. A lower standard 

deviation value implies that the RMSD values are tightly clustered around the mean, indicating excellent stability 

and consistency in the modeling approach. In contrast, a higher standard deviation value suggests more significant 

variability and potentially less stable results. 

 



 

 

REGRESSION RESULTS AND DISCUSSION 

Timedjeghdine et al. [53] studied the LLE experimental aspect of several thermodynamic systems 

consisting of water, acetic acid, and two kinds of solvent at a temperature of 301.15 K. The first is individual 

solvents (DCM and MIBK). The second is mixed solvents (25% MIBK with 75% DCM), (50% MIBK with 50% 

DCM), and (75% MIBK with 25% DCM). Then, the separation factor values obtained by utilizing the mixed 

solvent (50% MIBK with 50% DCM) are the highest. Consequently, this research selected this quaternary system 

as the studied system for LLE regression and modeling. 

The procedures of minimization are the fractional objective function optimization process (DE methods 

with OFx) and the activity objective function optimization process (DE methods with OFa), which are used this 

regression. In addition, it aims to estimate the binary interaction parameters obtained from the NRTL model for 

the quaternary system containing water, acetic acid, and mixed solvent (50% MIBK with 50% DCM) at a 

temperature of 301.15 K. 

Therefore, the efficacy of the DE standard method (DE_rand1) and its variants (JDE, JADE, and CODE) 

will be tested and assessed in the LLE calculation and modeling utilizing the studied quaternary system. 

Furthermore, theses algorithms were executed in MATLAB toolbox according to the preceding explanation (Fig. 

2, Fig. 3, and Table 1). This execution should determine the parameters of regression to obtain good outcomes.  

The outcomes were analyzed after executing the four algorithms, which rely on three parts: dependency 

on initial population positions, the calculated RMSD, and the execution time. Firstly, this research used the 

randomization procedure for the initiation of the population because it is simple and carried out in one step.  

Effect of regression's parameters 

In this section, the impact of significant regression parameters of regression on the value of the activity 

objective function (fitness) will be checked: 

- The size of the population (number of individuals), 

- The range of interaction parameters (search space limitation),  

- The number of iterations. 

Effect of population size  

In previous literature, the impact of population size on the objective function value has been examined by 

optimizing the NRTL model for predicting LLE data. For example, Sahoo et al. [67] found that a population size 

of 100 particles was enough to get a good set of parameters for the ternary system containing cyclohexane, xylene, 

and sulfolane when the AG method was used. 

Additionally, in 2015, Zheng Li et al. [44] employed the PSO method for LLE modeling with 300 particles. 

This number of individuals was adequate to produce a suitable set of parameters for the ternary system involving 

ethene tetrachloro, 2-propanol, and water. 

In this study, the DE standard method (DE_rand1) and its variants (JDE, JADE, and CODE) were tested 

with the effect of population size in LLE calculation, regression, and modeling for the studied system. This work 

used a population size that ranges between [12, 400]. The exact number should be determined to employ it in the 

algorithm by examination of its effect on the value of the activity objective function, which is shown in Fig. 5.  



 

 

 

Fig. 5: Effect of population size (individuals’ number) on the fitness values 

It has been shown that a population size of 200 is adequate to provide the accurate set of parameters for 

the DE standard method (DE_rand1) and its variants (JDE, JADE, and CODE) since the fitness value becomes 

roughly steady after a population size of 150. As a result, 200 is the population size value that will be used in DE 

algorithms to perform calculations. 

Effect of range of interaction parameters 

In prior literature, the effect of a range of interaction parameters on the objective function value was 

evaluated in LLE calculation and modeling using the NRTL model. For example, Zheng Li et al. utilized the PSO 

method in 2015 [44], and the values of the parameters were in the range of [-15, 15], which is necessary for 

generating better values of RMSD for the studied system. 

In this work, the DE standard method (DE_rand1) and its variants (JDE, JADE, and CODE) were evaluated 

with several intervals of interaction parameters spanning [-10, 10] and [-100, 100] ([lower, upper limits]) of 

minimum and maximum values to determine the best range. 

After minimizing the objective function using DE methods for each range (interval), the effect of 

interaction parameters’ search space size (range or limitation) on the activity objective function is shown in Fig. 

6.  



 

 

 

Fig. 6: Effect of parameters’ search space size (range or limitation) on the fitness values  

According to Fig.6, for example, the value 10 indicates min = -10 and max = + 10. In addition, larger 

fitness values are in the ranges from [-40, 40] to [-100, 100] than those that exist in the two ranges [-20, 20] and 

[-30, 30]. However, when compared between the two last ranges, the range [-20, 20] had the lowest fitness values. 

Regarding Eq. 19, there is a direct relationship between fitness and RMSD. Therefore, their RMSD values were 

the smallest, which provided the optimal interaction parameters (τij). As a result, the algorithm of DE selected 

this range as an interval of interaction parameters. 

Effect of iteration number  

In an earlier study, the NRTL model was used to look into how the number of iterations affected the value 

of the objective function in LLE calculations and models. For instance, Rama Octavian et al. in 2019 [68] 

employed a fixed iteration number of 250 using the PSO method to model vapor-liquid equilibrium data. This 

was acceptable for obtaining a suitable RMSD for the water, methanol, and ethanol systems. 

In this study, the impact of iterations number 200, 400, 500, and 1000 iterations on the activity objective 

function is illustrated in Fig. 7 (a), (b), (c), and (d) respectively. 

 

 

 



 

 

  

a) 200 iterations b) 400 iterations 

 
 

c) 500 iterations d) 10000 iterations 

Fig. 7: Effect of iteration’s number ((a ) 200, (b) 400, (c) 500, and (d) 1000) on the fitness values 

The objective function gets to a minimum point after approximately 180 iterations for 200 iteration. 

Furthermore, after performing several calculations for 400, 500, and 1000 iterations. It is noticed that the range 

spanning from 350 to 1000 iterations is adequate to obtain perfect outcomes.  

Moreover, for each iteration case for 200, 400, 500, and 1000 iterations, the precise values of the global 

minimum of the RMSD and their corresponding points were presented in Table 1. In addition, this table 

demonstrates the impact of the number of iterations on the activity objective function in LLE calculation data and 

the result of the optimization using the DE standard method (DE_rand1) and its variants. 

Table 2:  Effect of iteration number in calculation of LLE data for the DE standard method (DE_rand1) and its variants (CODE, JADE, and 

JDE). 

Number of iterations 
DE_rand1 CODE JADE JDE 

RMSD it RMSD it RMSD it RMSD it 

200 2.1692 175 1.7054 174 2.1180 184 1.9575 157 

400 1.3991 317 1.3666 373 1.6412 376 1.3991 393 

500 1.8057 413 1.1317 444 1.8606 467 1.4145 499 

1000 1.3975 943 0.9075 996 1.4653 959 1.3943 998 

 



 

 

According to Table 2, the highest values of the RMSD were for the number of iterations from 157 to 184. 

On the other hand, the smallest values of the RMSD were within the range of 943 to 998 iterations. In these two 

cases, this assessment was done according to all the DE methods. 

Based on Fig. 7 and Table 2, it is better to set the number of iterations at 1000 to guarantee the attainment 

of the global minimum (RMSD). As a result, accurate calculations and modeling of LLE will be achieved for the 

quaternary system containing water, acetic acid, and a mixed solvent (50% MIBK with 50% DCM) at a 

temperature of 301.15 K. 

Random initial particles 

This part aims to evaluate the efficacy of the DE standard method and its variants (JDE, JADE, and CADE) 

and identify the most effective approach for the quaternary system containing water, acetic acid, and mixed solvent 

(50% MIBK with 50% DCM). Therefore, the exact values of the regression parameters required to execute the 

DE algorithms according to the results of the previous section are 200 particles (Np = 200) for the population 

size and 1000 iterations. 

Furthermore, the non-random solution dispersion parameters (αij) are fixed at 0.2. Besides, the range of 

the energy parameters (τij) is [-20, 20]. In addition, the randomization procedure was used for the regression of 

the studied system. Thus, the algorithm was repeated five times to confirm the consistency and reliability of the 

results. 

The phase diagram illustrates the phase behavior of the studied system at equilibrium [69].  Figures 8 and 

9 present the phase diagram of water, acetic acid, and a mixed solvent (50% MIBK with 50% DCM) at a 

temperature of 301.15 K using fractional and activity objective functions, respectively, for the NRTL calculation 

of the experimental tie-line data. 
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Fig. 8: Comparison of experimental and NRTL correlated Tie- Line data for the studied system when using the fractional 

objective function optimization process. 
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Fig. 9: Comparison of experimental and NRTL correlated Tie- Line data for the studied system when using the 

activity objective function optimization process. 

As a result, the experimental and estimated LLE data exhibited excellent agreement. This alignment 

between the experimental and calculated data indicates the reliability of the calculations. Additionally, the 

thermodynamic model parameters [17, 55] have an impact on the computed mole f ractions. 

Tables 3 and 4 present the values of the NRTL  parameters determined when using the DE standard method 

and its modifications. These new values in this work differ from those published in Timedjeghdine's study  [53] 

when employing the GA method with minimization by the mole fraction objective function. Also, these parameter 

values matched the first iteration minimization by the activity objective function and the mole fraction objective 

function for the quaternary systems that were studied. 

Table 3: Calculated interaction parameters for the studied system when using mole fraction objective function minimization with DE standard 

method (DE_rand1) and its variants (CODE, JADE, and JDE). 

DE_rand1 CODE JADE JDE 

𝑨𝒊𝒋 𝑨𝒋𝒊 𝑨𝒊𝒋 𝑨𝒋𝒊 𝑨𝒊𝒋 𝑨𝒋𝒊 𝑨𝒊𝒋 𝑨𝒋𝒊 

-4.248 -9.161 0.748 -9.675 1.386 -10.274 1.383 -10.286 

-4.165 -19.782 20 -4.284 20 18.722 20 18.573 

-12.659 -19.868 13.265 -19.89 20 -20 20 -20 

 

Table 4: Calculated interaction parameters for the studied system when using activity objective function minimization with DE standard 

method (DE_rand1) and its variants (CODE, JADE, and JDE). 

DE_rand1 CODE JADE JDE 

𝑨𝒊𝒋 𝑨𝒋𝒊 𝑨𝒊𝒋 𝑨𝒋𝒊 𝑨𝒊𝒋 𝑨𝒋𝒊 𝑨𝒊𝒋 𝑨𝒋𝒊 

1.0181 -9.791 0.708 -9.71 1.384 -10.275 1.383 -10.276 

19.926 -5.254 20 -4.42 20 18.573 20 18.585 

18.416 -19.706 14.144 -19.925 20 -20 20 -20 

 

The analysis of RMSD values will evaluate the quality of determined parameters. Therefore, the RMSD 

values were calculated and listed in Tables 5 and 6 when using the fractional objective function optimization 

process and the activity objective function optimization process, respectively. Moreover, the time consumed to 



 

 

execute the four algorithms was taken into account and represented in the precedent tables (Tables 5 and 6). Then, 

it was measured in minutes. 

Table 5: Comparison of regression values and its execution time consumed using the DE standard method (DE_rand1) and its variants (CODE, 

JADE, and JDE) with the mole fraction objective function minimization. 

NR 
DE_rand1 CODE JADE JDE 

𝑹𝑴𝑺𝑫𝑖  it Time (min) 𝑹𝑴𝑺𝑫𝑖  it Time (min) 𝑹𝑴𝑺𝑫𝑖  it Time (min) 𝑹𝑴𝑺𝑫𝑖  it Time (min) 

1 0.0047 878 460.053 0.0090 647 1226.25 0.0107 992 610.917 0.0107 999 622.35 

2 0.0047 878 430.367 0.0090 964 1232.8 0.0107 945 429.1 0.0107 952 429.1 

3 0.0047 878 428.1 0.0089 759 1208.1 0.0107 1000 610.167 0.0107 984 444.217 

4 0.0047 878 428.283 0.0089 759 1207.23 0.0107 945 424.107 0.0107 999 612.1 

5 0.0047 878 429.483 0.0089 759 1209.25 0.0107 955 615.083 0.0107 991 658.15 

m 0.0047 0.0090 0.0107 0.0107 

std 0 1.1940×10-5 1.1761×10-7 5.3449×10-9 

 

According to the data shown in Table 5, the results from the five repetitions of the executed algorithms 

showed that the RMSD values for the DE_rand1 method were constant at 0.0047. On the other hand, the RMSD 

values for the CODE method ranged from 0.0090 to 0.0089. In addition, a constant value of 0.0107 was 

determined by using both the JADE and the JDE methods. Hence, it can be demonstrated that the DE_rand1 

method presented the lowest RMSD values. Furthermore, the DE_rand1 method provides the highest level of 

stability, as seen by its minimal variance equal to zero based on the standard deviation calculation (std). 

Moreover, the values of the consumed time were extremely similar for the five repetitions of the DE 

standard algorithm and its variants in the domain of [424.1, 1232.8] minutes. In addition, the highest values of the 

time were for executing the CODE method, which ranged between [1207.23, 1232.8] minutes. Whereas, the 

smallest values of the time were for executing the DE_rand1 method, which range between [428.1, 460.053] 

minutes. 

As a result, the original method (DE_rand1) outperforms its modifications when comparing the regression 

values and execution times using the DE methods with the minimization by the mole fraction objective function. 

This is primarily due to its shorter execution time and superior RMSD results. 

Table 6: Comparison of regression values and its execution time consumed using the DE standard method (DE_rand1) and its variants (CODE, 

JADE, and JDE) with the activity objective function minimization.  

NR 
DE_rand1 CODE JADE JDE 

𝑹𝑴𝑺𝑫𝒊 it Time (min) 𝑹𝑴𝑺𝑫𝒊 it Time (min) 𝑹𝑴𝑺𝑫𝒊 it Time (min) 𝑹𝑴𝑺𝑫𝒊 it Time (min) 

1 0.0099 915 453.2 0.0090 931 1235.98 0.0107 909 422.95 0.0107 989 426.083 

2 0.0099 878 430.367 0.0090 964 1232.8 0.0107 945 429.1 0.0107 952 429.1 

3 0.0099 915 426.383 0.0090 971 1214.86 0.0107 909 420.9 0.0107 989 448.633 

4 0.0099 878 428.283 0.0089 759 1207.23 0.0107 945 424.1 0.0107 999 612.1 

5 0.0099 915 432.217 0.0090 971 1203.37 0.0107 990 427.92 0.0107 989 427.717 

m 0.0099 0.0090 0.0107 0.0107 

std 0  9.8437×10-6 1.0202×10-7 0 



 

 

According to the data presented in Table 6, the results of the RMSD values for the two methods DE_rand1 

and CODE were determined to be 0.0099 and 0.0090, respectively. Meanwhile, the JADE and JDE methods have 

the same constant value of 0.0107.Regarding the CODE method the RMSD values were found to be the lowest. 

On the other hand, the DE_rand1 and JDE methods are the most stable when the deviation calculation (std) values 

are taken into account since their variances are the least, which is zero.  

The values of the time consumed for each method are similar for the five repetitions of the DE standard 

algorithm and its variants. Besides, the range of these values is between [420.9 ,1235.98] minutes. The values of 

CODE have the greatest values, which are within  [1203.37 ,1235.98] minutes. The results of  DE_rand1 have the 

lowest values, which are within [426.383 ,453.2] minutes.  

Although the DE_rand1 method produces values of RMSD slightly higher than the results of the CODE 

method by 0.0009. The stability and execution time were taken into account for the five iterations, the DE_rand1 

method was considered the best according to the comparison between the four optimization methods using the 

activity objective function. 

As a result, improvement in the parameters determined in this work provided lower RMSD values (inferior 

to 10−2) compared to the previous study introduced by Timedjeghdine [53], where its value was higher than 10−1 

by using the GA method with the fractional objective function. Which confirmed the development and 

enhancement of the LLE regression parameters using several recent optimization methods (DE, JDE, JADE, and 

CODE). 

CONCLUSION 

This study aimed to develop and enhance the regression of LLE by using several recent optimization 

methods (DE methods). The experimental liquid-liquid equilibrium (LLE) data of a quaternary system containing 

water, acetic acid, and a mixed solvent (50% dichloromethane (DCM) and 50% methyl isobutyl ketone (MIBK)) 

at a temperature of 301.15 K were studied.  

The calculations were performed using the isoactivity equations to determine the activity coefficients.  The 

NRTL interaction parameters were determined using LLE experimental data regression to enhance the 

effectiveness of the used model.  In addition, this study employed several optimization approaches, such as the 

DE standard method (DE_rand1) and its variants (JDE, JADE, and CODE) using the randomization process. 

These approaches used two distinct objective functions, namely the activity objective function and the mole 

fraction objective function to optimize the NRTL model. The efficiency of the DE method and its variations were 

evaluated using several regression parameters.  

The objective functions are important in influencing the calculation of interaction parameter values. Based 

on that, three statistical metrics including Root Mean Square Deviation (RMSD), mean (m), and standard 

deviation (std) were used in order to evaluate the accuracy and reliability of the LLE calculations. Furthermore, 

the results from the optimisation processes for the two objective functions also show that the DE method and its 

variations accurately calculated the LLE quaternary mixtures and well described the behavior of this system. 

Finally, a comparison was made between the results of the four methods using the two objective functions. 

The DE standard method (DE_rand1) had better results than its variants (JDE, JADE, and CODE). When the mole 



 

 

fraction and activity objective functions minimized the RMSD values of the DE_rand1 method, the lowest values 

were constant at 0.0047 and 0.0099, respectively. In addition, the DE_rand1 approach is the most stable as its 

variances are the lowest at zero according to the standard deviation calculation. The DE_rand1 has the lowest 

value of the execution time consumed. 

 

NOMENCLATURES 

𝒂  Chemical activity  

𝑨𝒊𝒋  Energy interaction between the molecules i and j  

𝑪𝑹 Crossover probability  

𝑫 
 Dimension of the search space 

𝑫𝒊 Distribution coefficient  

𝒇 Fugacity  

𝑭 Mutation factor  

𝒇𝒊
𝑹𝒊  Fugacity of the element i in a real solution  

 𝑮𝒊𝒋  Energy interaction between the molecules i and j  

𝒊 Element  

𝒊𝒓𝒂𝒏𝒅 (𝑫) A function generates random integers between 𝟏 𝐚𝐧𝐝  the dimension of the search 

space  (𝐃) 

𝒊𝒕 Iteration rank  

𝒋 Dimension of the search space 

𝒌  Tie lines number 

𝑲𝒊 Phase equilibrium constant for the element i  

𝒎 Mean 

𝑴 Tie line’ total number  

𝒏 Mole number (mol)  

𝑵 Constituents’ number in the studied system  

𝒏𝒄 Elements’ number  

𝒏𝑷 Phases’ number  

𝑵𝒑 Population size 

𝑵𝑹 Repetition’s number  

𝑶𝑭𝒂 Objective function in terms of activity  

𝑶𝑭𝒙 Objective function in terms of mole fraction  



 

 

𝑷 Pressure (atm)  

𝑷𝟏, 𝑷𝟐, 𝒂𝒏𝒅 𝒑 Phase 

𝑹 Ideal gas constant (cal K− 1  mol− 1)  

𝒓𝒂𝒏𝒅 A function generates random numbers between 𝟎 𝐚𝐧𝐝 𝟏 

𝒓𝟏, 𝒓𝟐, 𝒓𝟑, 𝒓𝟒, 𝒂𝒏𝒅 𝒓𝟓 Random integers  

𝑺 Separation factor 

𝑻 Temperature of the mixture (K)  

𝑼 Trial individual 

𝑽 Mutant vector  

𝒙 Mole fraction  

𝑿𝒃𝒆𝒔𝒕 The best individual vector 

𝑿𝒊 Current vector  

𝒙𝒊𝒌𝒆𝒙𝒑
𝒑

 Calculated fraction of element i along tie -line k in phase p  

𝒙𝒊𝒌𝒄𝒂𝒍
𝒑

 Experimental fraction of elements i along tie -l ine k in phase p   

Abbreviations 

𝑪𝑶𝑫𝑬 Composite differential evolution 

𝑫𝑪𝑴 Dichloromethane  

𝑫𝑬 Differential evolution  

DE_rand1  Standard differential evolution  

  𝑱𝑨𝑫𝑬 Adaptive differential evolution  

𝑱𝑫𝑬 Self-adaptive control parameters di fferential evolution  

𝑳𝑳𝑬 Liquid-liquid equilibrium 

𝑴𝑫𝑬 Modified differential evolution  

𝑴𝑰𝑩𝑲 Methyl isobutyl ketone  

𝑵𝑹𝑻𝑳 Nonrandom two-liquid 

𝑷𝑺𝑶 Particle swarm optimization  

 𝑹𝑴𝑺𝑫 Root mean square deviation  

𝑹𝑴𝑺𝑫𝒊𝒕 RMSD value in the 𝐢𝐭𝐭𝐡 Repetition 

SOO Single-objective optimization method 

𝒔𝒕𝒅 Standard deviation  

Greek letters   



 

 

𝜶𝒊𝒋 Non-randomness factor in the mixture  

𝜸𝒊 Activi ty coefficient of element i  

𝝁𝒊     Chemical potential of element i  

𝝈𝒊𝒌  Intermediate variable  

𝝉𝒊𝒋  Energy interaction between the molecules i and j  
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