Treatment of Landfill Leachate via Electrocoagulation and Electro-Fenton Processes: A Comparative Study

Document Type : Research Article

Author

Department of Environmental Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, TURKEY

10.30492/ijcce.2023.1988851.5848

Abstract

This study aims to compare the effectiveness of ElectroCoagulation (EC) and Electro-Fenton (EF) processes in the treatment of high-strength storage leachate. The effect of operating parameters, including initial pH, contact time, and mass ratio of COD: H2O2, on Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies of leachate was investigated. For this purpose, a jacketed reactor in which the electrochemical process is performed using monopolar-bonded iron electrodes is designed. As a result of the experimental studies, the optimum operating parameters of the EC process were determined as follows: pH 7, current density 150A/m2, and reaction time 30 minutes. Under these conditions, 37.87% COD and 47.36% TOC were removed respectively. Due to the lack of expected results in the treatment of this wastewater in the EC process, treatability studies were carried out with the EF process. As a result of the study, optimum conditions were found to be pH 3, current density 150 A/m2, H2O2= 500 mg/L (KOI: H2O2@1), and working time 10 min. A higher COD (71.7%) and TOC removal (90.87%) have been obtained with the EF process under optimum conditions. The operating costs of electrocoagulation and electro-Fenton processes under optimum conditions were calculated as 2.26 and 1.78 €/m3, respectively. Experimental findings revealed that, unlike the EC process, the EF process can be a good option for landfill leachate treatment in terms of providing less treatment time, less sludge, more cost-effectiveness, and necessary discharge limits.

Keywords

Main Subjects


[1] Vaccari M., Tudor T., Vinti G., Characteristics of Leachate from Landfills and Dumpsites in Asia, Africa and Latin America: An Overview, Waste Manage., 95: 416-431 (2019).
[3] Bove D.,  Merello S., Frumento D., Arni S.A., Aliakbarian B., Converti A., A Critical Review of Biological Processes and Technologies for Landfill Leachate Treatment, Chem. Eng. Technol., 38(12): 2115-2126 (2015).
[4] Mor S., Negi P., Ravindra K., Assessment of Groundwater Pollution by Landfills in India Using Leachate Pollution Index and Estimation of Error, Environ, Nanotechnol. Monit. Manage., 10: 467-476 (2018).
[5] Baderna D., Caloni F., Benfenati E., Investigating Landfill Leachate Toxicity in Vitro: A Review of Cell Models and Endpoints, Environ. Int., 122: 21-30 (2019).
[6] Torretta V., Ferronato N., Katsoyiannis I.A., Tolkou A.K., Airoldi M., Novel and Conventional Technologies
for Landfill Leachates Treatment: A Review,
Sustain., 9(1): 1-39 (2017).
[7] Bhatt A.H., Karanjekar R.V., Altouqi S., Sattler M.L., Hossain M.D.S., Chen V.P., Estimating Landfill Leachate BOD and COD Based on Rainfall, Ambient Temperature, and Waste Composition: Exploration of a MARS Statistical Approach, Environ. Technol. Innov., 8: 1-16 (2017).
[8] Baettker E.C., Kozak C., Knapik H.D., Aisse M.M., Applicability of Conventional and Non-Conventional Parameters for Municipal Landfill Leachate Characterization, Chemosphere, 251: 1-11 (2020).
[9] Shadi A.M.H.,  Kamaruddin M.A., Niza N.M., Emmanuela M.I., et al., Characterization of Stabilized Leachate and Evaluation of LPI from Sanitary Landfill in Penang, Malaysia, Desalin. Water Treat., 189:1-13 (2020).
[10] Mojiri A., Zhou J.L., Ratnaweera H.,   Ohashi A.,  et al., Treatment of Landfill Leachate with Different Techniques: An Overview, Water Res., 11(1): 66-96 (2021).
[11] Tenodi S., Krcmar D., Agbaba J., Zrnic K., et al., Assessment of the Environmental Impact of Sanitary and Unsanitary Parts of a Municipal Solid Waste Landfill, J.  Environ. Manage., 258: 1-15 (2020).
[13] Shadi A.M.H., Kamaruddin M.A., Niza N.M., Emmanuel M.I., et al., Electroflotation Treatment of Stabilized Landfill Leachate Using Titanium-Based Electrode, Int. J. Environ. Sci. Technol., 18: 2425-2440 (2020).
[14] Babaei S., Sabour M.R., Movahed S.M.A., Combined Landfill Leachate Treatment Methods: An Overview, Environ. Sci. Pollut. Res., 28: 59594-59607 (2021).
[15] Mandal P., Dubey B.K., Gupta A.K., Review on Landfill Leachate Treatment by Electrochemical Oxidation: Drawbacks, Challenges and Future Scope, Waste Manage., 69: 250-273 (2017).
[16] Yu M.D., . Xi B.D, Zhu Z.Q., Zhang L., et al., Fate and Removal of Aromatic Organic Matter Upon a Combined Leachate Treatment Process, Chem. Eng. J., 401: 1-10 (2020).
[17] Landfill Directive (1999/31/EC)., Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste (1999).
[20] European Commission (EC) Directive (2000/60/EC)., The European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Official Journal of the European Communities, (2000). 
[21] Water Pollution Control Regulation (WPCR-Turkey)., Official Gazette Date: 31.12.2004 Number of Official Gazette: 25687, (2004).
[22] Kamaruddin M.A., Yusoff M.S., Rui L.M., Isa A.M., et al., An Overview of Municipal Solid Waste Management and Landfill Leachate Treatment: Malaysia and Asian Perspectives, Environ. Sci. Pollut. Res., 24 (35): 26988-27020 (2017).
[23] Youcai Z., Ziyang L., Pollution Control and Resource Recovery for Landfill Gas. Pollution Control and Resource Recovery (Chapter Five), Munic. Solid Wast. Land., 227-319 (2017).
[24] Kebria D.Y., Ghavami M., Javadi S., Goharimanesh M., Combining an Experimental Study and ANFIS Modelling to Predict Landfill Leachate Transport in Underlying Soil- A Case Study in North of Iran, Environ, Monit. Assess., 190(1): 1-17 (2018).
[25] Qi C., Huang J., Wang B., Deng S., Wang Y., Yu G., Contaminants of Emerging Concern in Landfill Leachate in China: A Review, Emerg. Contam., 4(1): 1-10 (2018).
[26] Saleem M., Spagni A., Alibardi L., Bertucco A., Lavagnolo M.C., Assessment of Dynamic Membrane Filtration for Biological Treatment of Old Landfill Leachate, J. Environ. Manage., 213: 27-35 (2018).
 [27] Djeffal K., Bouranene S., Fievet P., Deon S., Gheid A., Treatment of Controlled Discharge Leachate by Coagulation-Flocculation: Influence of Operational Conditions, Sep. Sci. Technol., 56(1): 168-183 (2021).
[33] Ayala J., Fernandez B., Treatment from Abandoned Mine Landfill Leachates: Adsorption Technology, J. Mater. Res. Technol., 8 (3): 2732-2740 (2019).
[35] Almeida R., Bila D.M., Quintaes B.R., Campos J.C, Cost Estimation of Landfill Leachate Treatment by Reverse Osmosis in a Brazilian Landfill, Waste Manage. Res., 38(10): 1087-1092 (2020).
[36] Gripa E., Campos J.C., da Fonseca F.V., Combination of Ozonation and Microfiltration to Condition Landfill Leachate for Reverse Osmosis Treatment, J. Water Proc. Eng., 43: 1-15 (2021). 
[38] Scandelai A.P.J., Zotesso J.P., Jegatheesan V., Filho L.C., Tavares C.R.G.,  Intensification of Supercritical Water Oxidation (ScWO) Process for Landfill Leachate Treatment through Ion Exchange with ZeoliteWaste Manage., 101: 259-267 (2020).
[39] Chen W., Gu Z., Ran G., Li Q., Application of Membrane Separation Technology in the Treatment of Leachate in China: A Review, Waste Manage., 121: 127-140 (2021).
[41] Wu C., Chen W., Gu Z., Li Q., A Review of the Characteristics of Fenton and Ozonation Systems in Landfill Leachate Treatment, Sci. Total. Environ., 762: 1-15 (2021).
[42] Hussain S., Aneggi E., Trovarelli A., Goi D., Removal of Organics from Landfill Leachate by Heterogeneous Fenton-Like Oxidation Over Copper-Based Catalyst, Catalysts, 12(3):1-17  (2022).
[43] Meng G., Wang Y., Li X., Zhang H., et al., Treatment of Landfill Leachate Evaporation Concentrate by a Modified Electro-Fenton Method, Environ, Technol., 43(4): 500-513 (2022).
[44] Yang Z., Wu S., Sun H., Arhin S.G., et al., Efficient Degradation of Organic Compounds in Landfill Leachate via Developing Bio-Electro-Fenton Process, J. Environ. Manage., 319: 1-8 (2022).
[45] Tejera J., Hermosilla D., Gasco A., Miranda R., et al.,  Treatment of Mature Landfill Leachate by Electrocoagulation Followed by Fenton or UVA-LED Photo-Fenton Processes, J. Taiwan Inst. Chem. Eng., 119: 33-44 (2021). 
[46] Crispim A.C., de Araújo D.M., Martínez-Huitle C.A., Souza F.L., Dos Santos E.V., Application of Electro-Fenton and Photoelectro-Fenton Processes for the Degradation of Contaminants in Landfill Leachate, Environ. Res., 213: 1-11 (2022). 
[47] AlJaberi F.Y., Alardhi S.M., Ahmed S.A., Salman A.D., et al., Can Electrocoagulation Technology be Integrated with Wastewater Treatment Systems to Improve Treatment Efficiency?, Environ. Res., 214(2): 1-13 (2022).
[48] Bhagawati P.B., AlJaberi F.Y., Ahmed S.A., Kadier A., Alwan H.H., et al., Electrocoagulation Technology for Wastewater Treatment: Mechanism and Applications, In Book: “AOP in Dye-Cont”. WW, Ed. 1, Chap., 13: 305-318 (2022).
[49] Roudi A.M., Chelliapan S., Mohtar W.H.M.W., Kamyab H.,  Prediction and Optimization of the Fenton Process for the Treatment of Landfill Leachate Using an Artificial Neural Network, Water, 10: 1-12 (2018).
[50] Banch T.J.H.,  Hanafiah M.M., Alkarkhi A.F.M., Abu Amr S.S., Factorial Design and Optimization of Landfill Leachate Treatment Using Tannin-Based Natural Coagulant, Polymers, 11(8): 1-15 (2019).  
[53] Ding J., Jiang M., Zhao G., Wei L., Wang S., Zhao Q., Treatment of Leachate Concentrate by Electrocoagulation Coupled with Electro-Fenton-Like Process: Efficacy and Mechanism, Sep. Purif. Technol., 255: 1-8 (2020). 
[55] Moradi M., Vasseghian Y., Arabzade H., Khaneghah A.M., Various Wastewaters Treatment by Sono-Electrocoagulation Process: A Comprehensive Review of Operational Parameters and Future Outlook, Chemosphere, 263: 1-21 (2021).
[56] Alam P.N., Pasya H.L., Aditya R., Aslam I.N., Pontas K., Acid Mine Wastewater Treatment Using Electrocoagulation Method, Mater. Today: Proc., 63: 434-437 (2022).
[57] Magnisali E., Yanc Q., Vayenas D.V., Electrocoagulation as a Revived Wastewater Treatment Method-Practical Approaches: Areview, J. Chem. Technol. Biotechnol., 97: 9-25 (2022).
[58] Basulto D.L.V., Benitez A.P., Alvarez M.P., Perez T., et al., Tannery Wastewater Treatment Using Combined Electrocoagulation and Electro-Fenton Processes, J. Environ. Chem. Eng., 10(2): 1-9 (2022a).
[60] Babu D.S., Singh T.S.A., Nidheesh P.V., Kumar M.S., Industrial Wastewater Treatment by Electrocoagulation Process, Sep. Scı. Technol., 55(17): 3195-3227  (2020).
[62] Zazou H., Afanga H., Akhouairi S., Ouchtak H., Addi A.A., Treatment of Textile Industry Wastewater by Electrocoagulation Coupled with Electrochemical Advanced Oxidation Process, J. Water Process. Eng., 28: 214-221 (2019).
[63] Shahedi A., Darban A.K., Taghipour F., Zanjani A.J., A Review on Industrial Wastewater Treatment via Electrocoagulation Processes, Curr. Opin. Electrochem., 22: 154-169 (2020).
[64] Basulto D.L.V., Kadier A., Singh R., Mendoza R.N. et al., Post-Tanning Wastewater Treatment Using Electrocoagulation: Optimization, Kinetics, and Settlement Analysis, Process, Saf. Environ. Prot., 165: 872-886 (2022b).
[65] AlJaberi F.Y., Ahmed S.A., Makki H.F., Naje A.S., Zwain H.M., et al., Recent Advances and Applicable Flexibility Potential of Electrochemical Processes for Wastewater Treatment, Sci. Total Environ., 867: 1-22 (2023)
[66] Ana J., Lia N., Wanga S., Liaob C., Zhoub L., et al.,  A Novel Electro-Coagulation-Fenton for Energy Efficient Cyanobacteria and Cyanotoxins Removal without Chemical Addition, J. Hazard. Mater., 365: 650-658 (2019). 
[67] Liu Y., Zhang X., Jiang W.M., Wu M.R., Li Z.H., Comprehensive Review of Floc Growth and Structure Using Electrocoagulation: Characterization, Measurement, and Influencing Factors, Chem. Eng. J., 417: 1-24 (2021). 
[69] Dindaş G.B., Çalışkan Y., Çelebi E.E., Tekbaş M.,et al., Treatment of Pharmaceutical Wastewater by Combination of Electrocoagulation, Electro-Fenton and Photocatalytic Oxidation Processes, J. Environ. Chem. Eng., 8(3):1-8 (2020).
[70] Orimolade B.O., Zwane B.Z., Koiki B.A., Rivallin M., et al., Coupling Cathodic Electro-Fenton with Anodic Photo-Electrochemical Oxidation: A Feasibility Study on the Mineralization of Paracetamol, J. Environ. Chem. Eng., 8(5): 1-8 (2020).
[71] Divyapriya G., Nidheesh P.V., Importance of Graphene in the Electro-Fenton Process, ACS Omega, 5(10): 4725-4732 (2020).
[72] Jain B., Singh A.K., Kim H., Lichtfouse E., Sharma V.K., Treatment of Organic Pollutants by Homogeneous and Heterogeneous Fenton Reaction Processes, Environ. Chem. Lett., 16: 947-967 (2018).
[74] Gopinath A., Pisharody L., Popat A., Nidheesh P.V., Supported Catalysts for Heterogeneous Electro-Fenton Processes: Recent Trends and Future Directions, Curr. Opin. Solid State Mater. Sci., 26(2): 1-16  (2022).
[75] Nidheesh P.V., Zhou M., Oturan M.A., An Overview on the Removal of Synthetic Dyes from Water by Electrochemical Advanced Oxidation Processes, Chemosphere, 197: 210-227 (2018).
APHA/AWWA/WEF, Standard Methods for the Examination of Water and Wastewater, 23rd Edition: 1-541 (2017). 
[77] Fernandes A., Pacheco M.J., Ciriaco L., Lopes A., Review on the Electrochemical Processes for the Treatment of Sanitary Landfill Leachates: Present and Future, Appl. Catal. B: Environ., 176-177: 183-200 (2015).
[78] Mirshahghassemi S., Aminzadeh B., Torabian A., Afshinnia K., Optimizing Electrocoagulation and Electro-Fenton Process for Treating Car Wash Wastewater, Environ. Health Eng. Manage. J., 4(1): 37-43 (2017). 
[79] Jing G., Ren S., Gao Y., Sun W., Gao Z., Electrocoagulation: A Promising Method to Treat and Reuse Mineral Processing Wastewater with High COD, Water, 12(2): 1-12 (2020).
[80] Ghanbari F., Moradi M., Eslami A., Emamjomeh M.M., Electrocoagulation/Flotation of Textile Wastewater with Simultaneous Application of Aluminum and Iron as Anode, Environ. Process., 1(4): 447-457, (2014).
[81] Xu H., Yang Z., Zeng G., Luo Y., et al., Investigation of pH Evolution with Cr(VI) Removal in Electrocoagulation Process: Proposing a Real-Time Control Strategy, Chem. Eng. J., 239: 132-140 (2014).
[82] Demirci Y., Pekel L.C, Altinten A., Alpbaz M., Improvement of the Performance of an Electrocoagulation Process System Using Fuzzy Control of pH, Water Environ. Res., 87(12): 2045-2052 (2015). 
[83] Bhatti M.S., Reddy A.S., Thukral A.K., Electrocoagulation Removal of Cr(VI) from Simulated Wastewater Using Response Surface Methodology, J. Hazard. Mater., 172(2-3): 839-846 (2009).
[84] Nidheesh P.V., Kumar A., Babu D.S., Scaria J., Kumar M.S., Treatment of Mixed Industrial Wastewater by Electrocoagulation and Indirect Electrochemical Oxidation, Chemosphere, 251: 1-10 (2020).
[88] Gao X., Zhang C., Wang Y., Zhang H., et al., Treatment of Membrane Concentrated Landfill Leachate by a Heterogeneous Electro-Fenton Process with an Iron-Loaded Needle Coke Cathode, J. Environ. Chem. Eng., 10(5): 1-11 (2022).
[89] Chai Y., Qin P., Zhang J., Li T., Dai Z., Wu Z., Simultaneous Removal of Fe(II) and Mn(II) from Acid Mine Wastewater by Electro-Fenton Process, Process Saf. Environ., 143: 76-90 (2020).
[91] Menon P., Singh T.S.A., Pani N., Nidheesh P.V.,  Electro-Fenton Assisted Sonication for Removal of Ammoniacal Nitrogen and Organic Matter from Dye Intermediate Industrial Wastewater, Chemosphere, 269: 1-12 (2021).
[92] Sandhwar V.K., Saxena D., Verma S., Garg K.K., Prasad B., Comparison of COD removal from petrochemical Wastewater by Electro-Fenton and Electro Oxidation Processes: Optimization and Kinetic Analyses, Sep. Sci. Technol., 56(13): 2300-2309 (2021).
[94] Nidheesh P.V.R., Gandhimathi R., Comparative Removal of Rhodamine B from Aqueous Solution by Electro-Fenton and Electro-Fenton-Like Processes, Clean - Soil Air Water, 42(6): 1-6 (2014). 
[95] Ramirez J.H., Duarte F.M., Martins F.G., Costa C.A., Madeira L.M., Modelling of the Synthetic dye Orange II Degradation Using Fenton's Reagent: from Batch to Continuous Reactor Operation, Chem. Eng. J., 148(2-3): 394-404 (2009).
[98] Shokrı A., Application of Electrocoagulation Process for the Removal of Acid Orange 5 in Synthetic Wastewater, Iran. J. Chem. Chem. Eng. (IJCCE), 38(2): 113-119 (2019).
[100] Asaithambi P., Govindarajan R., Yesuf M.B., Alemayehu E., Removal of Color, COD and Determination of Power Consumption from Landfill Leachate Wastewater Using an Electrochemical Advanced Oxidation Processes, Sep. Purif. Technol., 233:1-8 (2020).
[101] Shamaei L., Khorshidi B., Perdicakis B., Sadrzadeh M., Treatment of Oil Sands Produced Water Using Combined Electrocoagulation and Chemical Coagulation Techniques, Sci. Total  Environ., 645: 560-572 (2018).
[102] Hashim K.S., Al Khaddar R., Jasim N., Shaw A., et al., Electrocoagulation as a Green Technology for Phosphate Removal from River Water, Sep. Purif. Technol., 210: 135-144 (2019).
[103] Abbasi S., Mirghorayshi M., Zinadini S., Zinatizadeh A.A., A Novel Single Continuous Electrocoagulation Process for Treatment of Licorice Processing Wastewater: Optimization of Operating Factors Using RSM, Process Saf. Environ. Pro., 134: 323-332 (2020).
[104] Elnakar H., Buchanan I., Soluble Chemical Oxygen Demand Removal from Bypass Wastewater Using Iron Electrocoagulation, Sci. Total Environ., 706: 1-11  (2020).
[107] Dia O., Drogui P., Buelna G., Dube R., Hybrid Process, Electrocoagulation-Biofiltration for landfill Leachate Treatment, Waste Manage., 75: 391-399 (2018).
[110] Galvao N., de Souza J.B., de SouzaVidal C.M., Landfill Leachate Treatment by Electrocoagulation: Effects of Current Density and Electrolysis Time, J. Env. Chem.  Eng., 8(5): 1-8 (2020).
[111] Farzadkia M., Vanani A.F., Golbaz S., Sajadi H.S., Characterization and Evaluation of Treatability of Wastewater Generated in Khuzestan Livestock Slaughterhouses and Assessing of Their Wastewater Treatment Systems, G. Nest J., 18(1): 108-118 (2016).
[113] Marlina E., Electro-Fenton for Industrial Wastewater Treatment: A Review, E3S Web of Conferences, 125: 1-5 (2019).
[115] Zaied B.K., Rashid M., Nasrullah M., Zularisam A.W., Pant D., Singh L., A Comprehensive Review on Contaminants Removal from Pharmaceutical Wastewater by Electrocoagulation Process, Sci. Total Environ., 726: 1-23 (2020).
[116] Moussa D.T., El-Naas M.H., Nasser M., Al-Marri M.J., A Comprehensive Review of Electrocoagulation for Water Treatment: Potentials and Challenges, J. Environ. Manage., 186: 24-41 (2017).
[117]  Nawarkar C.J., Salkar V.D., Solar Powered Electrocoagulation System for Municipal Wastewater Treatment, Fuel, 237: 222-226 (2019).
[118] Ling L.C., Buthiyappan A., Abdul Raman A.A., Abdul Jabar N.H., Singh R., Performance Investigation of Electrocoagulation and Electro-Fenton Processes for High Strength Landfill Leachate: Operational Parameters and Kinetics, Chemical Papers, 76: 2991-3003 (2022).
[119] Niazmand R., Jahani M., Kalantarian S., Treatment of Olive Processing Wastewater by Electrocoagulation: an Effectiveness and Economic Assessment, J. Environ. Manage., 248: 1-8 (2019).
[120] Bhagawan D., Poodari S., Golla S., Himabindu V., Vidyavathi S., Treatment of the Petroleum Refinery Wastewater Using Combined Electrochemical Methods, Desalin. Water Treat., 57: 3387-3394 (2016).
[121] Asfaha Y.G., Zewge F., Yohannes T.,  Kebede S., Application of Hybrid Electrocoagulation and Electrooxidation Process for Treatment of Wastewater from the Cotton Textile Industry, Chemosphere., 302: 1-14 (2022).
[123] Ahmadian M., Reshadat S., Yousefi N., Mirhossieni S.H., Municipal Leachate Treatment by Fenton Process: Effect of some Variable and Kinetics, J. Environ. Public Health., 2013: 1-6 (2013).
[125] Mahtab M.S., Islam D.T., Farooqi T.I., Optimization of the Process Variables for Landfill Leachate Treatment Using Fenton Based Advanced Oxidation Technique, Eng. Sci. Technol. Int. J., 24(2): 428-435 (2020).
[126] Nguyen D.D.D., Quang H.H.P., Nguyen X.H., Nguyen T.P., The Treatment of Real Dyeing Wastewater by the Electro-Fenton Process Using Drinking Water Treatment Sludge as a Catalyst, RSC Advances., 11: 27443-27452 (2021).
[127] Khajouei G., Mortazavian S., Saber A., Meymian N.Z., Hasheminejad H., Treatment of Composting Leachate Using Electro-Fenton Process with Scrap Iron Plates as Electrodes, Int. J. Environ. Sci. Technol., 16: 4133-4142 (2019).
 [128] Bui H.M., Huynh L.N., Removal of Tricyclazole and Total Organic Carbon in Real Pesticide Wastewater by Electro-Fenton, Hindawi J. Chem.,  2022: 1-12 (2022).
[129] Teymori M., Khorsandi H., Aghapour A.A., Jafari S.J., Maleki R., Electro‑Fenton Method for the Removal of Malachite Green: Effect of Operational Parameters, Appl. Water Sci., 10: 1-14 (2020).
[130] Saba N.F., Nurfaizah  A.T., Synthesis of Green Ferric Nanoparticles from Celery Leaves for the Dye Decolorization by Fenton Oxidation, Iran. J. Chem. Chem. Eng. (IJCCE), 41(11): 3567-3579 (2022).
[131] Babuponnusami A., Muthukumar K., A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment, J. Environ. Chem. Eng., 2(1): 557-572 (2014).
 [132] Khatri I., Singh S., Garg A., Performance of Electro-Fenton Process for Phenol Removal Using Iron Electrodes and Activated Carbon, J. Environ, Chem. Eng., 6(6): 7368-7376 (2018).
[133] Mohajeri S., Hamidi A.A., Isa M.H., Zahed M.A., Landfill Leachate Treatment through Electro-Fenton Oxidation, Pollut., 5(1): 199-209 (2019).
[135] Wang L., Li B., Dionysiou D.D., Chen B., Yang J., Li J., Overlooked Formation of H2O2  During the Hydroxyl Radical Scavenging Process when Using Alcohols as ScavengersEnviron. Sci. Technol., 56(6): 3386-3396 (2022).
[137] Mei Y., Yang J., Lu Y., Hao F., Xu D., Pan H., Wang J., BP-ANN Model Coupled with Particle Swarm Optimization for the Efficient Prediction of 2-Chlorophenol Removal in an Electro-Oxidation System, Int. J. Environ. Res. Public Health., 16(14): 1-17 (2019).
[139] Dolatabadi M., Swiergosz T., Ahmadzadeh S., Electro-Fenton Approach in Oxidative Degradation of Dimethyl Phthalate -The Treatment of Aqueous Leachate from Landfills, Sci. Total Environ., 772: 1-9 (2021).
[140] Jegadeesan C., Somanathan A., Jeyakumar R.B., Sharmila V.G., Combination of Electrocoagulation with Solar Photo Fenton Process for Treatment of Landfill Leachate, Environ. Technol., 6: 1-19 (2022).