Synthesis of Highly Hydrophilic Cellulose and Graphene Oxide Based Membranes: Application in Alcohol Dehydration

Document Type : Research Article

Authors

Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Lorestan, I.R. IRAN

Abstract

Combining highly ionic and very insoluble materials can be used to separate solvents with high water miscibility. In this work cellulose and Graphene Oxide (GO) were cross-linked by highly ionic N, N′-bis-(2-aminoethyl)-4,4′-dipyridinium bromide (BAEB) molecules to the preparation of CELL-BAEB and GO-BAEB membranes for alcohol dehydration. Fourier Transform InfraRed (FT-IR), proton nuclear magnetic resonance (1HNMR), X-Ray Photoelectron Spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Thermogravimetric Analysis (TGA) analyses were used to characterize the synthesized compounds. For ethanol, isopropyl alcohol (IPA), and n-butanol in a feed water concentration of 5-40 wt% and at a temperature range of 40-70°C, sorption parameters, including water content in the membrane, alcohol content in the membrane, swelling, and selectivity also pervaporation parameters, including water content in permeate, total flux, and separation factor, have been evaluated. The water content in the membrane was as high as 269 wt%, 276 wt%, 287 wt% for CELL-BAEB, and 188 wt%, 193 wt%, and 211 wt% for GO-BAEB in 40 wt% feed water at room temperature, and the separation factor was 3951, 4491, and 5616 for CELL-BAEB, and 2423, 3094, and 3741 for GO-BAEB in 10 wt% feed water at70 oC, for ethanol, IPA, and n-butanol, respectively. It was shown that the high flux and selective CELL-BAEB and GO-BAEB membranes are highly effective in separating water from alcohol.

Keywords

Main Subjects


[1] Mouhat F., Coudert F.X., Bocquet M.L., Structure and Chemistry of Graphene Oxide in Liquid Water from First Principles, Nat. Commun., 11: 1566 (2020).
[2] Li T.C., Chen A.H., Brozena J.Y., Zhu L., Xu C., Driemeier J., Dai O.J., Rojas A., Isogai L., Wågberg L., Developing Fibrillated Cellulose as a Sustainable Technological Material, Nature, 590: 47-56 (2021).
[3] Liang S., Song Y., Zhang Z., Mu B., Li R., Li Y., Yang H., Wang M., Pan F., Jiang Z., Construction of Graphene Oxide Membrane through Non-Covalent Cross-Linking by Sulfonated Cyclodextrin for Ultra-Permeable Butanol Dehydration, J. Membr. Sci., 621: 118938 (2021).
[4] Li L., Lu Y., Li L., Yang J., Fu W., Luo Y., Lu J., Zhang Y., Zhou L., Highly Selective Zeolite T Membranes with Different ERI Stacking Faults for Pervaporative Dehydration of Ethanol, J. Membr. Sci., 638: 119701 (2021).
[5] Ma J., Ping D., Dong X., Recent Developments of Graphene Oxide-based Membranes: A Review, Membranes, 7(3): 52 (2017).
[6] Shao L. Lia Y., Pana F., Zhang Z., Liang S., Wang Y., Zou J., Jiang Z., Graphene Oxide Membranes Tuned by Metal-Phytic Acid Coordination Complex for Butanol Dehydration, J. Membr. Sci., 638: 119736 (2021).
[7] Esmaeili-Faraj S.H., Hassanzadeh A., ShakeriankhooF., Hosseini S., Vaferi B., Diesel Fuel Desulfurization by Alumina/Polymer Nanocomposite Membrane: Experimental Analysis and Modeling by the Response Surface Methodology, Chem. Eng. Process.: Process Intensif., 164: 108396 (2021).
[8] Corra S., Curcio M., Baroncini M., Silvi S., Credi A., Photoactivated Artificial Molecular Machines that Can Perform Tasks, Adv. Mater., 32(20): 1906064 (2020).
[9] Jyothia M.S., Reddy K.R., Soontarapa K., Naveenc S., Raghuc A.V., Kulkarnid R.V., Suhase D.P., Shettif N.P., Nadagoudag M.N., Aminabhavih T.M., Membranes for Dehydration of Alcohols via Pervaporation, J. Membr. Sci., 242: 415-429 (2019).
[10] Khalid A., Aslam M., Abdul Qyyum M., Faisal A., Laeeq Khan Asim., Ahmed F., Lee M., Kim J., Jang N., Chang I.S, Bazmi A.A., Yasin M., Membrane Separation Processes for Dehydration of Bioethanol from Fermentation Broths: Recent Developments, Challenges, and Prospects, Renewable Sustainable Energy Rev., 105:427-443 (2019).
[11] Wu Y., Ding L., Lu Z., Deng J., Wei Y., Two-Dimensional MXene Membrane for Ethanol Dehydration, J. Membr. Sci., 590: 117300 (2019).
[12] Walther T., Francois J.M., Microbial Production of Propanol, Biotechnol. Adv., 34(5): 984-996 (2016).
[13] Shi G.M., Chung T.S., Thin Film Composite Membranes on Ceramic for Pervaporation Dehydration of Isopropanol, J. Mem. Sci., 448: 34-43 (2013).
[14] Harvey B.G., Meylemans H.A., The Role of Butanol in the Development of Sustainable Fuel Technologies, J. Chem. Tech. Biotech., 86: 2-9 (2011).
[15] Castro-Muñoz R., Galiano F., Fíla V., Drioli E., Figoli A., Mixed Matrix Membranes (MMMs) for Ethanol Purification through Pervaporation: Current State of the Art, Rev. Chem. Eng., 35(5): 0115 (2018).
[16] Hosseini M., “Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts”, Woodhead Publishing, The University of Texas, United States (2019).
[17] Venkata Mohan S., Varjani S., Pandey A., “Microbial Electrochemical Technology”, Elsevier Publication (2019).
[18] Marjani A., Mechanistic Modeling of Organic Compounds Separation from Water via Polymeric Membranes, Iran. J. Chem. Chem. Eng. (IJCCE), 36(6): 139-149 (2017).
[19] Torkaman R., Kazemian H., Soltanieh M., Removal of BTX Compounds from Wastewaters Using Template Free MFI Zeolitic Membrane, Iran. J. Chem. Chem. Eng. (IJCCE), 29(4): 91-98 (2011).
[20] Liu G., Jin W., Pervaporation Membrane Materials: Recent Trends and Perspectives, J. Membr. Sci., 636: 119557 (2021).
[21] Haresh K.D., Kaushik N., Acetic Acid Separation as a Function of Temperature Using Commercial Pervaporation Membrane, Iran. J. Chem. Chem. Eng. (IJCCE), 38(3): 283-292 (2019).
[22] Liu P., Chen M., Ma Y., Hu C., Zhang Q., Zhu A., Liu Q., A Hydrophobic Pervaporation Membrane with Hierarchical Microporosity for High-Efficient Dehydration of Alcohols, Chem. Eng. Sci., 206: 489-498 (2019).
[23] Rahimalimamaghani A., Pacheco Tanaka D.A., Liosa Tanco M.A., Neira D'Angelo F., Gallucci F., New Hydrophilic Carbon Molecular Sieve Membranes for Bioethanol Dehydration via Pervaporation, J. Chem. Eng., 435: 134891 (2022).
[24] Bolto B., Hoang M., Xie Z., A Review of Membrane Selection for the Dehydration of Aqueous Ethanol by Pervaporation, Chem. Eng. Proc., 50: 227-235 (2011).
[28] Xu S., Wang Y., Novel Thermally Cross-Linked Polyimide Membranes for Ethanol Dehydration via Pervaporation, J. Membr. Sci., 496: 142-155 (2015).
[29] Huang Y.H., Huang S.H., Chao W.C., Li C.L., Hsieh Y.Y., Hung W.S., Liaw D.J., Hu C.C., Lee K.R., Lai J.Y., A Study on the Characteristics and Pervaporation Performance of Polyamide Thin-Film Composite Membranes with Modified Polyacrylonitrile as Substrate for Bioethanol Dehydration, Polym. Int., 63: 1478-1486 (2014).
[30] Dmitrenko M., Kuzminova A., Zolotarev A., Ermakov S., Roizard D., Penkova A., Enhanced Pervaporation Properties of PVA-based Membranes Modified with Polyelectrolytes. Application to IPA Dehydration, Polymers, 12(1): 14 (2020).
[31] Liu G., Wei W., Jin W., Pervaporation Membranes for Biobutanol Production, ACS Sustainable Chem. Eng., 2: 546−560 (2014).
[32] Shah K.W., Wang S.X., Soo S.X.Y., Xu J., Viologen-based Electrochromic Materials: from Small Molecules, Polymers and Composites to Their Applications, Polymers, 11(11): 1839 (2019).
[33] An Q., Huanga T., Shi F., Covalent Layer-by-Layer Films: Chemistry, Design, and Multidisciplinary Applications, Chem. Soc. Rev., 47: 5061-5098 (2018).
[35] Xu S., Wang Y., Novel Thermally Cross-Linked Polyimide Membranes for Ethanol Dehydration via Pervaporation, J. Membr. Sci., 496: 142-155 (2015).
[36] Liang S., Song Y., Zhang Z., Mu B., Li R., Li Y., Yang H., Wang M., Pan F., Jiang Z., Construction of Graphene Oxide Membrane through Non-Covalent Cross-Linking by Sulfonated Cyclodextrin for Ultra-Permeable Butanol Dehydration, J. Membr. Sci., 621: 118938 (2021).
[37] Hung W.S., Tsou C.H., Guzman M.D., An Q.F., Liu Y.L., Zhang Y.M., Hu C.C., Lee K.R., Lai J.Y., Cross-Linking with Diamine Monomers to Prepare Composite Graphene Oxide-Framework Membranes with Varying d-Spacing, Chem. Mater., 26(9): 2983–2990 (2014).
[39] Zhang L., Yan P., Lia Y., He X., Dai Y., Tan Z., Preparation and Antibacterial Activity of a Cellulose-based Schiff base Derived from Dialdehyde Cellulose and L-Lysine, Ind. Crops. Prod., 145: 112126 (2020).
[40] Vrettos K., Karouta N., Loginos P., Donthula S., Gournis D., Georgakilas V., The Role of Diamines in the Formation of Graphene Aerogels, Front. Mater., 5: 20 (2018).
[41] Stadermann M., Baxamusa S.H., Ruddle C.A., Chea M., Li S., Youngblood K., Suratwala T., Fabrication of Large-Area Free-Standing Ultrathin Polymer Films, J. Vis. Exp., 100: 52832 (2015).
[42] Xu Y., Yu S., Peng G., Sotto A., Ruan H., Shen J., Gao C., Novel Crosslinked Brominated Polyphenylene Oxide Composite Nanofiltration Membranes with Organic Solvent Permeability and Swelling Property, J. Membr. Sci., 620(15): 118784 (2021).
[43] Leo R., Lecaros G., Ho S.Y., Tsai H.A., Hung W.S., Hu C.C., Huang S.H., Lee K.R., Lai J.Y., Ionically Cross-Linked Sodium Alginate and Polyamidoamine Dendrimers for Ethanol/Water Separation through Pervaporation, Sep. Pur. Technol., 275: 119125 (2021).
[45] Paredes J.I., Rodi S.V., Alonso A.M., Tascón J.M.D., Graphene Oxide Dispersions in Organic Solvents, Langmuir, 24: 10560-10564 (2008).
[47] Yang D., Velamakanni A., Bozoklu G., Park S., Stoller M., Piner R.D., Stankovich S., Jung I., Field D.A., Ventrice C.A., Ruoff R.S., Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-Ray Photoelectron and Micro-Raman Spectroscopy, Carbon, 47: 145-152 (2009).
[48] Song Y., Gao Y., Rong H., Wen H., Sha Y., Zhang H., Liu H.J., Liu Q., Functionalization of Graphene Oxide with Naphthalenediimide Diamine for High-Performance Cathode Materials of Lithium-Ion Batteries, Sustain. Energy Fuels, 2: 803-810 (2018).
[49] Movagharnezhad N., Moghadam P.N., In Vitro Evaluation of Biopolymer Networks Based on Crosslinked Cellulose with Various Diamines, J. Appl. Polym. Sci., 132(41): 5 (2015).
[50] Lindh J., Ruan C., Strømme M., Mihranyan A., Preparation of Porous Cellulose Beads via Introduction of Diamine Spacers, Langmuir, 32(22): 5600-5607 (2016).
[51] Hu H., Zhao Z., Wan W., Gogotsi Y., Qiu J., Ultralight and Highly Compressible Graphene Aerogels, Adv. Mater., 25(15): 2219-2223 (2013).
[52] Compton O.C., Dikin D.A., Putz K.W., Brinson L.C., Nguyen S.B.T., Electrically Conductive ‘‘Alkylated’’ Graphene Paper via Chemical Reduction of Amine-Functionalized Graphene Oxide Paper, Adv. Mater., 22(8): 892-896 (2010).
[53] Ishak W.H.W., Ahmad I., Ramli S., Amin M.C.I.M., Gamma Irradiation-Assisted Synthesis of Cellulose Nanocrystal-Reinforced Gelatin Hydrogels, Nanomaterials, 8(10): 749 (2018).
[54] Zhang L., Yan P., Lia Y., He X., Dai Y., Tan Z., Preparation and Antibacterial Activity of a Cellulose-based Schiff base Derived from Dialdehyde Cellulose and L-Lysine, Ind. Crops. Prod., 145:112126 (2020).
[55] Li J., Liu D., Li B., Wang J., Han, S., Liu L., Wei H., A Bio-Inspired Nacre-Like Layered Hybrid Structure of Calcium Carbonate under the Control Ofcarboxyl Graphene, Cryst. Eng. Comm., 17: 520–525 (2015).
[56] Vrettos K., Karouta N., Loginos P., Donthula S., Gournis D., Georgakilas V., The Role of Diamines in the Formation of Graphene Aerogels, Front. Mater., 5: 20 (2018).
[57] Siller M., Amer H., Bacher M., Roggenstein W., Rosenau T., Potthast A., Effects of Periodate Oxidation on Cellulose Polymorphs, J. Cheminformatics, 22: 2245-2261 (2015).
[58] Lindh J., Ruan C., Strømme M., Mihranyan A., Preparation of Porous Cellulose Beads via Introduction of Diamine Spacers, Lang., 32(22): 5600-5607 (2016).
[59] Gimenes M.L., Liu L., Feng X., Sericin/Poly(Vinyl Alcohol) Blend Membranes for Pervaporation Separation of Ethanol/Water Mixtures, J. Membr. Sci., 295: 71-79 (2007).
[60] Liu T., An Q.F., Zhao Q., Lee K.R., Zhu B.K., Qian J.W., Jie-Gao C., Preparation and Characterization of Polyelectrolyte Complex Membranes Bearing Alkyl Side Chains for the Pervaporation Dehydration of Alcohols, J. Membr. Sci., 429: 181-189 (2013).
[61] Wang Y., Shung T., Bernard C., Neo W., Gruender M., Processing and Engineering of Pervaporation Dehydration of Ethylene Glycol via Dual-Layer Polybenzimidazole (PBI)/Polyetherimide (PEI) Membranes, J. Membr. Sci., 378: 339-350 (2011).
[62] Xing R., Pan F., Zhao J., Cao K., Gao C., Yang S., Liu G., Wu H., Jiang Z., Enhancing the Permeation Selectivity of Sodium Alginate Membrane by Incorporating Attapulgite Nanorods for Ethanol Dehydration, RSC Adv., 6: 14381-14392 (2016).
[64] Zheng P.Y., Ye C.C., Wang X.S., Chen K.F., An Q.F., Lee K.R., Gao C.J., Poly(Sodium Vinylsulfonate)/Chitosan Membranes with Sulfonate Ionic Cross-Linking and Free Sulfate Groups: Preparation and Application in Alcohol Dehydration, J. Membr. Sci., 510: 220-228 (2016).
[65] Galiano F., Falbo F., Figoli A., Methanol Separation from Liquid Mixtures via Pervaporation Using Membranes, “Methanol Science and Engineering”, 361-380, USA, (2018).
[66] Zhao D., Zhao J., Ji Y., Liu G., Liu S., Jin W., Facilitated Water-Selective Permeation via PEGylation of Graphene Oxide Membrane, J. Membr. Sci., 567: 311-320 (2018).
[67] Li G., Shi L., Zeng G., Zhang Y., Sun Y., Efficient Dehydration of the Organic Solvents through Graphene Oxide (GO)/Ceramic Composite Membranes, RSC. Adv., 4: 52012-52015 (2014).
[68] Tsou C.H., An Q.F., Lo S.C., Guzman M.D., Hung W.S., Hu C.C., Lee K.R., Lai J.Y., Effect of Microstructure of Graphene Oxide Fabricated through Different Self-Assembly Techniques on 1-Butanol Dehydration, J. Membr. Sci., 477: 93-100 (2015).