Microbial Fuel Cell: Its Efficiency and Applicability

Document Type : Review Article


1 Department of Basic Sciences, Alvan Ikoku Federal College of Education Owerri, Imo State, NIGERIA

2 Materials and Electrochemical Research Unit (MERU), Department of Chemistry, Federal Polytechnic Nekede, Owerri, Imo State, NIGERIA

3 Africa Center of Excellence in Future Energies and Electrochemical System (ACE-FUELS), Federal University of Technology Owerri, Imo State, NIGERIA

4 Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama, JAPAN


The economic development of a country depends on the management, applicability, and utilization of its resources. Efficient energy generation and application in the industrial and agricultural sectors are of paramount importance. Due to the high need for a healthy environment coupled with sustainable energy, it has become necessary for the government and industries to look beyond carbon-based energy sources, which most developing countries depend on heavily for their energy generation, and begin to consider other sources of energy. These carbon-based energy sources generate greenhouse gases, causing global warming and climate change. Microbial Fuel Cells (MFCs) are a promising energy source, providing sustainable and environmentally friendly energy. They can harness the chemical energy in organic compounds and channel it to the generation of electrical energy while providing environmental remediation. Its functioning is efficient, widespread, convenient, and promising. This review considers the various types of MFCs, their mode of operation, strategies for improving their performance, and future prospects.


Main Subjects

[1] Yuta Y., Kazunori N., Masaji K., Inoue K., Funuyoshi O., Hitoshi S., Satonu K., Electricity Generation from Rice Bran by a Microbial Fuel Cell and the Influence of Hydrodynamic, American Chemical Society, 3: 15267-15271 (2018).
[2] Wang J., Ren K., Zhu Y., Huang J., Liu S., A Review of Recent Advances in Microbial Fuel Cells: Preparation, Operation, and Application, BioTech, 11(44): 1-21 (2022).
[3] Palanisamy G., Jung H.Y., Sadhasivam T., Kurkuri M.D., Kim S.C., Roh S.H., A Comprehensive Review on Microbial Fuel Cell Technologies: Processes, Utilization, and Advanced Developments in Electrodes and Membranes, J. Clean. Prod., 221: 598-621 (2019).
[4] Fadzil F.S., Bhawani S.A., Mohammad S.A., Microbial Fuel Cell: Recent Development in Organic Substrate Use and Bacterial Electrode Interaction, Journal of Chemistry, 2021: 4570388 (2021).   
[5] Tekle Y., Demeke A., Review on Microbial Fuel Cell. Basic Research Journal of Microbiology, 2(1): 5-17 (2015).
[6] Yifeng Z., Booki M., Liping H., Irini A., Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells, Applied and Environmental Microbiology, 75(11): 3389-3395 (2009).
[7] Pant D., Van B.G., Diels L., Vanbroekhoven K.,
A Review of the Substrates Used in Microbial Fuel Cells (MFCs) for Sustainable Energy Production, Bioresour. Technol., 101: 1533-1543 (2010).
[8] Ahmadi N., Taraghi H., Sadeghiazad M., A Numerical Study of a Three-Dimensional Proton Exchange Membrane Fuel Cell (PEMFC) with Parallel and Counter Flow Gas Channels, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 39: 309-323 (2015).
[9] Ahmadi N., Rezazadeh S., Asgharikia M., Shabahangnia E., Optimization of Polymer Electrolyte Membrane Fuel Cell Performance by Geometrical Changes, Iran J. Chem. Chem. Eng. (IJCCE), 36(2): 89-106 (2017).
[10] Sharma Y., Li B., The Variation of Power Generation with Organic Substrates in Single Chamber Microbial Fuel Cells (SCMFCs), Bioresource Technology, 101(6): 1844-1850 (2010).
[11] Rahimnejad M., Adhami A., Darvari S., Zirepour A., Oh S.E., Microbial Fuel Cell as New Technology for Bioelectricity Generation: A Review, Alexandria Engineering Journal, 54(3): 745-756 (2015).
[12] Bhavya R., Pavitha V., Aarthi S., Dharani K., Prabhu N., Fabrication of Electricity from Waste Water by Utilizing Microbial Fuel Cell: A Review, International Journal of Research in Applied Sciences and Biotechnology, 7(3): 1-12 (2020).
[13] Chaturvedi V., Pradeep V., Microbial Fuel Cell: A Green Approach for the Utilization of Waste for the Generation of Bioelectricity, Bioresources and Bioprocessing, 3(38): 1-14 (2016).
[14] Fakhrial F., Azura A., Wan W., Azlin S., Electricity Generation in Microbial Fuel Cell (MFC) by Bacterium Isolated from Rice Paddy Field Soil, E 3S Web of Conferences, 34: 1-9 (2017).
[15] Chouler J., Padgett G.A., Cameron J.P., Preuss K., Titirici M., Ieropoulous I., Lorenzo D.M., Towards Effective Small Scale Microbial Fuel Cells for Energy Generation, Electrochimica Acta., 192: 89-98 (2016).
[17] Khan M.D., Abdulateif H., Ismail I.M., Sabir S., Khan M.Z., Bioelectricity Generation and Bioremediation of an Azo Dye in a Microbial Fuel Cell Coupled Activated Sludge Process. PLOS ONE, 10(10): 1-18 (2015).
[18] Aziz S., Mamon A.R., Shah S.F., Soomra S.A., Parkash A., Prototype Designing and Operational Aspect of Microbial Fuel Cell- Review Paper, Sci. Int. (Lahore), 25(1): 49-56 (2013).
[19] Yaqoob A.A., Khatoon A., Setapar M.H.S., Parveen T.U.K., Ibrahim M.N.M., Ahmad A., Rafatullah M., Outlook on the Role of Microbial Fuel Cells in Remediation of Environmental Pollutants with Electricity Generation, Catalysis, 10(819): 1-34 (2020).
[20] Chang H., Zou Y., Hu R., Feng H., Wu H., Zhong N., Hu J., Membrane Application for Microbial Energy Conversion: A Review, Environmental Chemistry Letters, 18(16): 1-12 (2020).
[21] Aelterman P., Rabaey K.,  Pham H.T., Continuous Electricity Generation at High Voltages and Current Using Stacked Microbial Fuel Cells, Journal of Environmental Science and Technology, 40(10): 3388-3394 (2006).
[22 ] Prasad J., Tripathi R.K., Scale Up Sediment Microbial Fuel Cell for Powering Led Lighting. International Journal of Renewable Energy Development, 7(1): 53-58 (2018).
[23] Sekrecta-Belniak A., Toczylowska-maminska R., Fungi-based Microbial Fuel Cells, Energies, 11: 1-18 (2018).
[24] Simeos M.F., Maiorano A.E., Dos santos J.G., Peixoto L., Brambilla de Souza R.F., Neto A.O., Brito A.G., Ottoni C.A., Micrbial Fuel Cell-Induced Production of Laccase to Degrade the Anthraquinone Dye Removal Brilliant Blue R, Environmental Chemistry Letters, 17: 1413-1420 (2019).
[25] Harimawan A., Davianto H., Al-Aziz R.M.T., Shofinita D., Setiadi T., Influence of Electrode Distance on Electrical Energy Production on Microbial Fuel Cell Using Tapioca Waste Water, J. Eng. Technol. Sci., 50(6): 841-855 (2018).
[26] Ezziat L., Elabed A., lbnsouda S., El Abed S., Challenges of Microbial Fuel Cell Architecture on Heavy Metal Recovery and Removal from Waste Water, Frontiers in Energy Research, 7(1): 1-13 (2019).
[27] Narayanasamy S., Jayaprakash J., Application of Carbon-Polymer based Composite Electrodes for Microbial Fuel Cells, Reviews in Environmental Science and Bio/Technology, 19(3): 595–620 (2020).
[28] Umar K., Yaqoob A., Ibrahim M., Parveen T., Safian M., Environmental Applications of Smart Polymer Composites, Smart Polymer Nanocomposites, 15: 295–320 (2020).
[29] Olabi A.G., Wilberforce T., Sayed E.T., Elsaid K., Rezk H., Abdelkareem M.A., Recent Progress of Graphene-Based Nanomaterials in Bioelectrochemical Systems, Science of the Total Environment, 749: 141225 (2020).
[30] Zhang T., Zeng Y., Chen S., Ai X., Yang H., Improved Performances of E. Coli-Catalyzed Microbial Fuel Cells with Composite Graphite/PTFE Anodes, Electrochemistry Communications, 9(3): 349–353 (2007).
[31] Chen S., Li J., Liu L., He Q., Zhou L., Yang T., Wang X., He P., Zhang H., Jia B., Fabrication of Co/Pr Co-Doped Ti/PbO2 Anode for Efficiently Electrocatalytic Degradation of ß-Naphthoxyacetic Acid, Chemisphere, 256: 127139 (2020).
[32] Mustakeem M., Electrode Material for Microbial Fuel Cells: Nanomaterial Approach, Mater. Renew. Sustain. Energy, 4: 1-11 (2015).
[33] Fu L., You S., Zhang G., Yang F., Fang X., Degradation of Azo Dyes Using in-Situ Fenton Reaction Incorporated into H2O2.- Producing Microbial Fuel Cell, Chemical Engineering Journal, 160: 164-169 (2010).
[34] Khan A.M., Obaid M., Comparative Bioelectricity Generation from Waste Citrus Fruit Using Galvanic Cell, Fuel Cell and Microbial Fuel Cell, Journal of Energy in Southern Africa, 26(4): 90-99 (2015).
[35] Ahmadi N., ReZazadeh S., Mirzaee I., Pourmahmoud N., Three-Dimensional Computation Fluid Dynamic Analysis of the Conventional PEM Fuel and Investigation of Prominent Gas Layers Effect, Journal of Mechanical Science and Technology, 26(8): 2247-2257 (2012).
[36] Hossein S., Ahmadi N., Ali J., Effects of Applying Brand New Designs on the Performance of PEM Fuel Cell and Water Flooding Phenomena, Iran. J. Chem. Chem. Eng. (IJCCE), 41(2): 618-635 (2022).
[37] Khan R.M., Karim M.R., Amin M.S.A., Generation of Bio-Electricity by Microbial Fuel Cells, International Journal of Engineering and Technology, 1(3): 231-237 (2012).
[38] Tharali A.D., Namrata S., Osborne J.W., Microbial Fuel Cells in Bioelectricity Production, Frontiers in Life Science, 9(4): 252-266 (2016).
[39] Rozsenberski T, Kook L., Hutvagner D., Nemestothy N., Belafi-Bako K., Bakonyi P., Kurdi R., Sarkady A., Comparism of Anaerobic Degradation Processes for Bioenergy Generation from Liquid Fraction of Pressed Solid Waste, Waste and Biomass Valorization, 6: 465-473 (2015).
[40] Kook L., Rozsenberseki T., Nemestothy N., Belafi-Bako K., Bakonyi P., Bioelectrochemical Treatment of Municipal Waste Liquor in Microbial Fuel Cells for Energy Volarization, Journal of Cleaner Production, 112: 4406-4412 (2016).  
[41] Nosek D., Cydzik-Kwiatkowska A., Microbial Structure and Energy Generation in Microbial Fuel Cell Powered with Waste Anaerobic Digestate, Energies, 13(4712): 1-12 (2020).
[42] Gonzalez J.M.L., Benitez H.C., Juarez A.Z., Perez Z.E., Coutino R.A.V., Robles I., Godinez A.L., Rodriguez-Valadez J.F., Study of the Effect of Activated Carbon Cathode Configuration on the Performance of a Membrane-Less Microbial Fuel Cell Catalyst, Catalysts, 10(619): 1-10 (2020).
[43] Morajian M.J., Fang Z., Yong Y-C., Recent Advances on Biomass-Fueled Microbial Fuel Cell, Bioresources and Bioprocessing, 8: 14 (2021).
[44] Shrestha N., Fogg A., Franco D., Wilder J., Komisar S., Gadlamshetty V., Electricity Generation from Defective Tomatoes, Biotechnology, 112: 67-76 (2016).
[45] Sasaki D., Sasaki K., Yota T., Kondo A., Less Biomass and Intracellular Glutamate in Anodic Biofilm Lead to Efficient Electricity Generation by Microbial Fuel Cells, Biotechnology for Biofuels, 12: 72 (2019)
[46] Abdallah K.Y., Etevez T.A., Yantawy M.D., Ibraheem M.A., Khalit M.N., Employing Laccase-Producing Aspergillus Sydowii NYKA 510 as a Cathodic Biocatalyst in Self-Sufficient Lighting Microbial Fuel Cell, J. Microbiol. Biotechnol., 29(12): 1861-1872 (2019).
[47] Cao Y., Mu H., Liu W., Zhang R., Guo J., Xian M., Liu H., Electricigens in the Anode of Microbial Fuel Cells: Pure Cultures Versus Mixed Communities, Microbial Cell Factories, 18(39): 1-14 (2019).
[48] Angelacilincy J.M., Krishnaraj N.R., Shakambari B.A., Kathiresan S., Varalakshmi P., Biofilm Engineering Approaches for Improving the Performance of Microbial Fuel Cells and Bioelectrochemical Systems, Frontiers in Energy Research, 6(63): 1-12 (2016).
[49] Jung S., Regan M.J., Influence of External Resistance on Electrogenesis, Methanogenesis, and Anode Prokaryotic Communities in Microbial Fuel Cells, Applied and Environmental Microbiology, 77(2): 564-571 (2011).
 [50] Adegunloye D.V., Olotu T.M., Generating Electricity Using Microbial Fuel Cell Powered Benthic Mud Collected from Two Locations of Akure, Nigeria, European Scientific Journal, 13(18): 1857-7881 (2014).
[51] Singh S., Lien L.S., Srivastava C.V., Hiwarkar D.A., Comparative Study of Electrochemical Oxidation for Dye Degradation: Parametric Optimization and Mechanism Identification, Journal of Environmental Chemical Engineering, 4(3): 2911-2921 (2016).
[52] Zhang F., Pant D., Logan B.E., Long-Term Performance of Activated Carbon Air Cathode with Different Diffusion of Layer Porosities in Microbial Fuel Cells, Biosensors and Bioelectronics, 30: 49-55 (2011).
[53] Zakaria Z., Othman M.R., Hasan Z.S., Wan A.W., Electrochemical Degradation of Reactive Orange 16 by Using Charcoal-Based Metallic Composite Electrodes. Sains Malaysiana, 40(4): 791-801 (2019).  
[54] Cheng-Gan N., Wang Y., Zhang X., Zeng G., Huang D., Ruan M., Li X., Decolourization of an Azo Dye Orange G. in Microbial Fuel Cell Using Fe(11)-EDTA Catalyzed Persulfate, Bioresource Technology, 126: 101-106 (2012).
[55] Samarghandi M.R., Dargahi A., Shabanloo A., Nasab Z.H.,  Vaziri Y., Ansari A., Electrochemical Degradation of Methylene Blue Dye Using a Graphite Doped PbO2 Anode: Optimization of Operational Parameters, Degradation Pathway and Improving the Biodegradability of Textile Waste Water, Arabian Journal of Chemistry, 13: 6847-6864 (2020).
[56] He Z., Nealson K.H., Mansfeld F., Electricity Generation Using Microbial Fuel Cells. US8524402132 (2013).
[57] Adeleye S.A., Okorondu S.I., Bioelectricity from Students Hostel Waste Water Using Microbial Fuel Cell, International Journal of Biological and Chemical Science, 9(2): 1038-1049 (2015). 
[58] Zhiyong Y., Kiwi-Minsker L., Renken A., Kiwi J., Detoxification of Diluted Azo Dye at Biocompactable pH with the Ozone/Co2+ Reagent
in Dark and Light Processes. Journal of Molecular Catalysis A: Chemical, 252: 113-119 (2006).
[59] Gao N., Qu B., Xing Z., Ji X., Zhang E., Liu H., Development of Novel Polyethylene Air-Cathode Material for Microbial Fuel Cells, Elsevier manuscript
[60] Nam T., Son S., Kim E., Tran H.V.H., Koo B., Chai H., Kim J., Pandit S., Gurung A., Oh S., Kim E.J., Choi Y., Jung P.S., Improved Structures of Stainless Steel Current Collector Increased Power Generation of Microbial Fuel Cells by Decreasing Cathodic Charge Transfer Impedance, Environ. Eng. Res., 23(4): 383-389 (2018).