V-Doped Starch/Graphitic-Carbon Nitride Composite for Enhanced Pollution Degradation through Response Surface Methodology: The Study of Photocatalytic and Adsorption Process

Document Type : Research Article


Department of Chemistry, Ayatollah Boroujerdi University, Boroujerd, I.R. IRAN


The V-doped starch/graphitic carbon nitride was synthesized for the degradation of organic pollutants. This novel photocatalyst was characterized by various techniques including Fourier Transform InfraRed (FT-IR) spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), X-ray Diffractometer (XRD), Photoluminescence (PL) spectroscopy, Energy Dispersive X-ray (EDX), Transmission Electron Microscopy (TEM), and Brunauer-Emmett-Teller (BET) analysis. Based on
the Central Composite Designs-Response Surface Methodology (CCD-RSM) design, 50 full experiments were done including pH (7.8-9.8), adsorbent dose (0.01-0.1 g), MB concentration (2-12 ppm), time (30-240 min), and temperature (15-45 °C) for the methylene blue removal by V-doped starch/graphitic carbon nitride, and the best removal yield (90.8 %) was obtained at pH=8.33, 0.08 g adsorbent dose, 12 ppm of MB concentration, 215 min, and 15 °C. Further, the interaction of adsorption parameters was considered, and the Freundlich and pseudo-second-order were shown as the best adsorption models. After
the adsorption process, the photocatalytic degradation of MB was conducted under UV irradiation with high yield
(92 %), and the trapping experiments confirmed the photocatalytic degradation. As a result, the V-doped starch/graphitic carbon nitride can be employed for the adsorption and photocatalytic activities for the removal of organic pollutants from aqueous solution.


Main Subjects

[1] Naeimi A., Nejat R., Synthesis and Characterization of a Novel Bio-Magnetically Recoverable Palladium Nanocomposite for the Photocatalytic Applications, Iranian Journal of Chemistry and Chemical Engineering. (IJCCE), 41(1): 15-26 (2022).
[2] Mahmoodi N.M., Taghizadeh M., Taghizadeh A., Abdi J., Hayati B., Shekarchi A.A., Bio-Based Magnetic Metal-Organic Framework Nanocomposite: Ultrasound-Assisted Synthesis and Pollutant (Heavy Metal and Dye) Removal from Aqueous Media, Applied Surface Science, 480: 288-299 (2019).
[3] Zhu Z., Huo P., Lu Z., Yan Y., Liu Z., Shi W., Li C., Dong H., Fabrication of Magnetically Recoverable Photocatalysts Using g-C3N4 for Effective Separation of Charge Carriers through Like-Z-Scheme Mechanism with Fe3O4 Mediator, Chemical Engineering Journal, 331: 615-625 (2018).
[5] Singh R.S., Gautam A., Rai V., Engineering the Electronic Structure in Titanium Dioxide via Scandium Doping Based on Density Functional Theory Approach for the Photocatalysis and Photovoltaic Applications, Iranian Journal of Chemistry and Chemical Engineering, 42(3): 731-739 (2022). Nazim Younes,
[6] Djamel N., Samira A., NaY Zeolite and TiO2 Impregnated NaY Zeolite for the Adsorption and Photocatalytic Degradation of Methylene Blue under Sunlight, Iranian Journal of Chemistry and Chemical Engineering, 41(6): 1907-1920 (2022).
[7] Amoresi R.A.C., Oliveira R.C., Marana N.L., de Almeida P.B., Prata P.S., Zaghete M.A., Longo E., Sambrano J.R., Simões A.Z., CeO2 Nanoparticle Morphologies and their Corresponding Crystalline Planes for the Photocatalytic Degradation of Organic Pollutants, ACS Applied Nano Materials, 2: 6513-6526 (2019).
[8] Uddin M.T., Nicolas Y., Olivier C., Toupance T., Servant L., Müller M.M., Kleebe H.-J., Ziegler J., Jaegermann W., Nanostructured SnO2–ZnO Heterojunction Photocatalysts Showing Enhanced Photocatalytic Activity for the Degradation of Organic Dyes, Inorganic Chemistry, 51: 7764-7773 (2012).
[9] Giahi M., Rahbar A., Mehdizadeh K., Photochemical Degradation of an Environmental Pollutant by Pure ZnO and MgO Doped ZnO Nanocatalysts, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40: 83-91 (2021).
[11] Gnanaprakasam A.J., Sivakumar V.M., Thirumarimurugan M., Investigation of Photocatalytic Activity of Nd-Doped ZnO Nanoparticles Using Brilliant Green Dye: Synthesis and Characterization, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(2): 61-71 (2018).
[12] Dong G., Zhang Y., Pan Q., Qiu J., A fantastic Graphitic Carbon Nitride (g-C3N4) Material: Electronic Structure, Photocatalytic and Photoelectronic Properties, Jour. Photo. Photobio. C: Photochemistry Reviews, 20: 33-50 (2014).l
[14] Li X., Zhang J., Shen L., Ma Y., Lei W., Cui Q., Zou G., Preparation and Characterization of Graphitic Carbon Nitride through Pyrolysis of Melamine. Applied Physics A, 94: 387-392  (2009).
[15] Denisov N., Chubenko E., Bondarenko V., Borisenko V., Synthesis of Oxygen-Doped Graphitic Carbon Nitride From Thiourea, Technical Physics Letters, 45: 108-110 (2019).
[17] Zheng Y., Liu J., Liang J., Jaroniec M., Qiao S.Z., Graphitic Carbon Nitride Materials: Controllable Synthesis and Applications in Fuel Cells and Photocatalysis, Energy & Environmental Science, 5: 6717-6731 (2012).
[18] Zhu J., Xiao P., Li H., Carabineiro S.A., Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis, ACS Applied Materials & Interfaces, 6: 16449-16465 (2014).
[19] Reddy I.N., Reddy L.V., Jayashree N., Reddy C.V., Cho M., Kim D., Shim J., Vanadium-Doped Graphitic Carbon Nitride for Multifunctional Applications: Photoelectrochemical Water Splitting and Antibacterial Activities, Chemosphere, 264: 128593 (2021).
[20] Chegeni M., Mehri M., Shokri Rozbahani Z., Synthesis and Antibacterial Performance of Ag/Co2O3/g-C3N4 Nanocomposite, Jour. Ultra. Grain. Nanostruc. Mater., 54(1): 58-63 (2021).
[23] Yamsang N., Sittiwong J., Srifa P., Boekfa B., Sawangphruk M., Maihom T., Limtrakul J., First-Principle Study of Lithium Polysulfide Adsorption on Heteroatom Doped Graphitic Carbon Nitride for Lithium-Sulfur Batteries, Applied Surface Science, 565: 150378 (2021).
[25] Yamsang N., Sittiwong J., Srifa P., Boekfa B., Sawangphruk M., Maihom T., Limtrakul J., First-Principle Study of Lithium Polysulfide Adsorption on Heteroatom Doped Graphitic Carbon Nitride for Lithium-Sulfur Batteries, Applied Surface Science, 565: 150378 (2021).
[26] Huang, Y.; Ning, L.; Feng, Z.; Ma, G.; Yang, S.; Su, Y.; Hong, Y.; Wang, H.; Peng, L.; Li, J., Graphitic Carbon Nitride Nanosheets with Low O N1-Doping Content as Efficient Photocatalysts for Organic Pollutant Degradation. Environmental Science: Nano, 8(2):460-469 (2021).
[27] Wang L., Wang C., Hu X., Xue H., Pang H., Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications, Chemistry–An Asian Journal, 11(23): 3305-3328 (2016).
[28] Sun Z., Li C., Du X., Zheng S., Wang G., Facile Synthesis of Two Clay Minerals Supported Graphitic Carbon Nitride Composites as Highly Efficient Visible-Light-Driven Photocatalysts, Journal of Colloid and Interface Science, 511: 268-276 (2018).
[29] Chegeni M., Mehri M., Dehdashtian S., Photocatalytic Bauxite and Red Mud/Graphitic Carbon Nitride Composites for Rhodamine B Removal, Journal of Molecular Structure, 1242: 130752 (2021).
[30] Wang C., Liu G., Song K., Wang X., Wang H., Zhao N., He F., Three‐Dimensional Hierarchical Porous Carbon/Graphitic Carbon Nitride Composites for Efficient Photocatalytic Hydrogen Production, ChemCatChem, 11(24): 6364-6371 (2019).
[31] You S., Guo S., Zhao X., Sun M., Sun C., Su Z., Wang X., All-Inorganic Perovskite/Graphitic Carbon Nitride Composites for CO2 Photoreduction into C1 Compounds under Low Concentrations of CO2, Dalton Transactions, 48(37): 14115-14121 (2019).
[32] Amiri M., Salehniya H., Habibi-Yangjeh A., Graphitic Carbon Nitride/Chitosan Composite for Adsorption and Electrochemical Determination of Mercury in Real Samples, Industrial and Engineering Chemistry Research, 55(29): 8114-8122 (2016).
[33] Zhang C., Li Y., Shuai D., Zhang W., Niu L., Wang L., Zhang H., Visible-Light-Driven, Water-Surface-Floating Antimicrobials Developed from Graphitic Carbon Nitride and Expanded Perlite for Water Disinfection, Chemosphere, 208: 84-92 (2018).
[34] Al-Azmi, A., Keshipour, S.,. Dimaval as an Efficient Ligand for Binding Ru(III) on Cross-Linked Chitosan Aerogel: Synthesis, Characterization and Catalytic Investigation. Cellulose, 27: 895-904 (2020).
[40] Fu X., Tang W., Ji L., Chen S., V2O5/Al2O3 Composite Photocatalyst: Preparation, Characterization, and the Role of Al2O3, Chem. Eng. J., 180: 170-177 (2012).
[41] Jiang H., Nagai M., Kobayashi K., Enhanced Photocatalytic Activity for Degradation of Methylene Blue over V2O5/BiVO4 Composite, Journal of Alloys and Compounds, 479(1-2): 821-827 (2009).
[42] Mukhtar F., Munawar T., Nadeem M.S., ur Rehman M.N., Riaz M., Iqbal F., Dual S-Scheme Heterojunction ZnO–V2O5–WO3 Nanocomposite with Enhanced Photocatalytic and Antimicrobial Activity, Mater. Chem. Phys., 263: 124372 (2021).
[43] Oladoye P.O., Ajiboye T.O., Omotola E.O., Oyewola O.J., Methylene Blue Dye: Toxicity and Potential Elimination Technology from Wastewater, Results in Engineering, 16: 100678 (2022).
[44] Iran Manesh M., Sohrabi M.R., Mortazavi Nik S., Nanoscale Zero-Valent Iron Supported on Graphene Novel Adsorbent for the Removal of Diazo Direct Red 81 from Aqueous Solution: Isotherm, Kinetics, and Thermodynamic Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 41(6): 1844-1855 (2022).
[45] Ali Akbari Ghavimi S., Ebrahimzadeh, M.H., Solati-Hashjin M., Abu Osman N.A., Polycaprolactone/Starch Composite: Fabrication, Structure, Properties, and Applications, J. Biomed. Mater. Res. A, 103(7): 2482-98 (2015).
[47] Rasoulzadeh H., Dehghani M.H., Mohammadi A.S., Karri R.R., Nabizadeh R., Nazmara S., Kim K.-H., Sahu J.N., Parametric Modelling of Pb(II) Adsorption onto Chitosan-Coated Fe3O4 Particles through RSM and DE Hybrid Evolutionary Optimization Framework, Journal of Molecular Liquids, 297: 111893 (2020).
[48] Onu C.E., Nwabanne J.T., Ohale P.E., Asadu C.O., Comparative Analysis of RSM, ANN and ANFIS and the Mechanistic Modeling in Eriochrome Black-T Dye Adsorption Using Modified Clay, South African Journal of Chemical Engineering, 36: 24-42 (2021).
[50] Abdi J., Vossoughi M., Mahmoodi N.M., Alemzadeh I., Synthesis of Amine-Modified Zeolitic Imidazolate Framework-8, Ultrasound-Assisted Dye Removal and Modeling, Ultrasonics Sonochemistry, 39: 550-564 (2017).
[51] Yan S., Li Z., Zou Z., Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine. Langmuir, 25(17): 10397-10401 (2009).
[52] Abdi J., Mahmoodi N.M., Vossoughi M., Alemzadeh I., Synthesis of Magnetic Metal-Organic Framework Nanocomposite (ZIF-8@SiO2@MnFe2O4) as a Novel Adsorbent for Selective Dye Removal from  Multicomponent Systems, Microporous and Mesoporous Materials, 273: 177-188 (2019).
[53] Pozo C., Rodríguez-Llamazares S., Bouza R., Barral L., Castaño J., Müller N., Restrepo I., Study of the Structural Order of Native Starch Granules Using Combined FT-IR and XRD Analysis, Journal of Polymer Research, 25(12): 266 (2018).
[54] Yao Y., Xu F., Chen M., Xu Z., Zhu Z., Adsorption Behavior of Methylene Blue on Carbon Nanotubes, Bioresource Technology, 101(9): 3040-3046 (2010).
[55] Demir H., Top A., Balköse D., Ülkü S., Dye Adsorption Behavior of Luffa Cylindrica Fibers, Journal of Hazardous Materials, 153(1): 389-394 (2008).
[56] Yan H., Tao X., Yang Z., Li K., Yang H., Li A., Cheng R., Effects of the Oxidation Degree of Graphene Oxide on the Adsorption of Methylene Blue, Journal of Hazardous Materials, 268: 191-198 (2014).
[57] Zou X., Zhang H., Chen T., Li H., Meng C., Xia Y., Guo J., Preparation and Characterization of Polyacrylamide / Sodium Alginate Microspheres and its Adsorption of MB Dye, Coll. Surf. A: Physico. Eng. Aspec., 567: 184-192 (2019).
[58] Liu Y., Feng P., Wang Z., Jiao X., Akhtar F., Novel Fabrication and Enhanced Photocatalytic MB Degradation of Hierarchical Porous Monoliths of MoO3 Nanoplates, Scientific Reports, 7(1): 1845 (2017).
[59] Baghriche O., Rtimi S., Pulgarin C., Kiwi J., Polystyrene CuO/Cu2O Uniform Films Inducing MB-Degradation under Sunlight, Catalysis Today, 284: 77-83 (2017).
[60] Senthilraja A., Subash B., Krishnakumar B., Rajamanickam D., Swaminathan M., Shanthi M., Synthesis, Characterization and Catalytic Activity of co-Doped Ag–Au–ZnO for MB Dye Degradation under UV-A Light, Materials Science in Semiconductor Processing, 22: 83-91 (2014).
[61] Zhao F., Liu L., Yang F., Ren N., E-Fenton Degradation of MB during Filtration with Gr/PPy Modified Membrane Cathode, Chemical Engineering Journal, 230:491-498 (2013).
[63] Wu K., Wu P., Zhu J., Liu C., Dong X., Wu J., Meng G., Xu K., Hou J., Liu Z., Guo X., Synthesis of Hollow Core-Shell CdS@TiO2/Ni2P Photocatalyst for Enhancing Hydrogen Evolution and Degradation of MB, Chemical Engineering Journal, 360: 221-230 (2019).
[64] Gupta N., Ghaffari Y., Kim S., Bae J., Kim K., Photocatalytic Degradation of Organic Pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) Nanoparticles at Neutral pH. Scientific Reports, 10: 4942 (2020).
[65] Kongseng P., Amornpitoksuk P., Chantarak S., Development of Multifunctional Hydrogel Composite based on Poly(Vinyl Alcohol-G-Acrylamide) for Removal and Photocatalytic Degradation of Organic Dyes, Reactive and Functional Polymers, 172: 105207 (2022).
[66] Lyubimenko R., Busko D., Richards B.S., Schäfer A.I., Turshatov A., Efficient Photocatalytic Removal of Methylene Blue Using a Metalloporphyrin–Poly(vinylidene fluoride) Hybrid Membrane in a Flow-Through Reactor. ACS Applied Materials & Interfaces, 11(35):31763-31776 (2019).
[67] Xu H.-Y., Wu L.-C., Zhao H., Jin L.-G., Qi S.-Y., Synergic Effect between Adsorption and Photocatalysis of Metal-Free g-C3N4 Derived from Different Precursors,  10(11): e0142616-e0142616 (2015).
[68] Zhou B., Zhao X., Liu H., Qu J., Huang C.P., Visible-Light Sensitive Cobalt-Doped BiVO4 (Co-BiVO4) Photocatalytic Composites for the Degradation of Methylene Blue Dye in Dilute Aqueous Solutions, Applied Catalysis B: Environmental, 99(1): 214-221 (2010).
[69]  Daud W.M.A.W., Evaluating the Efficiency of Nano-Sized Cu Doped TiO2/ZnO Photocatalyst under Visible Light Irradiation, Journal of Molecular Liquids, 258: 354-365 (2018).
[70] Dariani R.S., Esmaeili A., Mortezaali A., Dehghanpour S., Photocatalytic Reaction and Degradation of Methylene Blue on TiO2 Nano-Sized Particles, Optik, 127: 7143-7154 (2016).