Hydrogels and Their Novel Applications

Document Type : Review Article


Department of Chemistry, Ahar Branch, Islamic Azad University, Ahar, I.R. IRAN


Hydrogels are 3-D (three-dimensional) polymer networks that can be natural or synthetic. After encountering water, do not dissolve but swell. Hydrogels swell in different conditions, such as temperature, pH, and ionic strength, and show other behaviors. Two initiators are used to prepare hydrogels: chemical and radiation initiation. Today, hydrogels have many applications, especially in medical and biomedical science. Vinyl hydrogels are the most applicable ones by worldwide 'polymer chemists'. Allylic monomers cannot be easily polymerized by the free radical polymerization method. The achieved polymers have low molecular weight and cannot convert to hydrogels typically. Inter-penetrating polymer network (IPN) hydrogels can be used in the wastewater remediation industry. Amphiphilic and amphoteric semi-(IPN)s are asserted in the metal adsorption and water purification industry. 


Main Subjects

[1] Nguyen Q.V., Huynh D.P., Park J.H., Lee D.S., Injectable Polymeric Hydrogels for the Delivery of Therapeutic Agents: A Review, European Polymer J., 72: 602-619 (2015).
[2] Radhakrishnan J., Krishnan U.M., Sethuraman S., Hydrogel Based Injectable Scaffolds for Cardiac Tissue Regeneration, Biotechnol Adv., 32(2): 449-461 (2014).
[3] Thambi T., Li Y., Lee D.S., Injectable Hydrogels for Sustained Release of Therapeutic Agents, J. Control Release., 267: 57-66 (2017).
[4] Hoffman A.S., Hydrogels for Biomedical Applications, Adv Drug Del. Rev, 64: 18-23 (2012).
[5] Akhtar M.F., Hanif M., Ranjha N.M., Methods of Synthesis of Hydrogels … AReview, Saudi Pharm. J., 24(5): 554-559 (2016).
[6] Mathew A.P, Uthaman S., Cho K.H., Cho C.S., Park I.K., Injectable Hydrogels for Delivering Biotherapeutic Molecules, Int. J. Biol. Macromol., 110: 17-29 (2018).
[7] Riederer M.S., Requist B.D., Payne K.A., Way J.D., Krebs M.D., Injectable and Microporous Scaffold of Densely-Packed, Growth Factor-Encapsulating Chitosan Microgels, Carbo. Poly., 152: 792-801 (2016).
[8] Pacelli S., Acosta F., Chakravarti A.R., Samanta S.G., Whitlow J., Modaresi S., Ahmed R.P.H., Rajasingh J., Paul A., Nanodiamond-based Injectable Hydrogel for Sustained Growth Factor Release: Preparation, Characterization and in Vitro Analysis, Acta Biomater., 58: 479-491 (2017).
[9] Tani J., Takagi T., Qiu J., Intelligent Material Systems: Application of Functional Materials, Applied Mechanics Reviews51: 505-521 (1998).
[11] Saraydin D., Karadağ E., Güven O., Super Water-Retainer Hydrogels: Crosslinked Acrylamide/ Succinic Acid Copolymers, Poly. J., 29(8): 631–636 (1997).
[12] Saraydın D., Karadagˇ E., Işıkver Y., Şahiner N., Güven O., The Influence of Preparation Methods on the Swelling and Network Properties of Acrylamide Hydrogels with Crosslinkers, Jour. Macromol. Science, Part A, 41(4): 419–431 (2004).
[13] Saraydin D., Karadağ E., Güven O., Acrylamide/maleic acid hydrogels, Polymers for Advanced Technologies, 6(12): 719–726 (1995).  
[14] Karadağ E., Üzüm Ö.B., Saraydın D., Güven O., Swelling Characterization of Gamma-Radiation Induced Crosslinked Acrylamide/Maleic Acid Hydrogels in Urea Solutions, Materials & Design, 27(7): 576–584 (2006).
[16] Caló E., Khutoryanskiy V.V., Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products, European Polymer Journal, 65: 252-267 (2015).
[17] Sepehrianazar A., Guven O., Free Radical Polymerization of Allylamine in Different Acidic Media, Polym. Polym. Compos., 30:  09673911221103599 (2022).
[18] Ahmed E.M., Hydrogel: Preparation, characterization, and applications: A ReviewJ. Adv. Res., 6(2): 105-121 (2015).
[19] Shin J., Braun P.V., Lee W., Fast Response Photonic Crystal pH Sensor based on Templated Photopolymerized Hydrogel Inverse Opal, Sens Actuat B: Chem, 150(1): 183–190 (2010).
[20] Weissleder R., Bogdanov A., US5514379, (1996).
[21] Mathew A.P., Uthaman S., Cho K.H., Cho C.S., Park I.K., Injectable Hydrogels for Delivering Biotherapeutic Molecules, Int. J. Biol. Macromol., 110: 17-29 (2018).
[22] Alexander A., Ajazuddin Khan J., Saraf S., Saraf S., Polyethylene Glycol (PEG)-Poly(N-Isopropylacrylamide) (PNIPAAm) based Thermosensitive Injectable Hydrogels for Biomedical Applications, Eur. J. Pha. Bio., 88(3): 575-885 (2014).
[23] Ma X., Xu T., Chen W., Qin H., Chi B., Ye Z., Injectable Hydrogels based on the Hyaluronic Acid and Poly (γ-Glutamic Acid) for Controlled Protein Delivery, Carbohydr. Polym., 179: 100-109 (2018).
[24 Vedadghavami A., Minooei F., Mohammadi M.H., Khetani S., Rezaei Kolahchi A., Mashayekhan S., Sanati-Nezhad A., Manufacturing of Hydrogel Biomaterials with Controlled Mechanical Properties for Tissue Engineering Applications, Acta Biomater., 62: 42-63 (2017).
[25] Naahidi S., Jafari M., Logan M., Wang Y., Yuan Y., Bae H., Dixon B., Chen P., Biocompatibility of Hydrogel-based Scaffolds for Tissue Engineering Applications, Biotechnol Adv., 35(5): 530-544 (2017).
[26] Kofinas P., Kioussis D.R., Reactive Phosphorus Removal from Aquaculture and Poultry Productions Systems Using Polymeric Hydrogels, Envir. Sci. & Techn., 37(2): 423–427 (2002).
[27] Kioussis D.R., Kofinas P., Characterization of Anion Diffusion in Polymer Hydrogels used for Wastewater Remediation, Polymer, 46(22): 9342–9347 (2005).
[28] Kofinas P., Kioussis D.R., Reactive Phosphorous Removal from Aquaculture and Poultry Productions Systems using Polymetric Hydrogels, Environ. Sci. Technol, 37: 423-427 (2003).
[29] Sepehrianazar A., Guven O., Synthesis and Characterization of Poly(Vinyl Sulfonic Acid) in Different pH Values, Poly. Bull., 80: 3005-3020 (2022).
[31] Saraydın D., Yıldırım E.Ş., Karadağ E., Güven O., Radiation-Synthesized Acrylamide/Crotonic Acid Hydrogels for Selective Mercury (II) Ion Adsorption. Advances in Polymer Technology, 37(3): 822–829 (2016).
[32] Ekici S., Işıkver Y., Saraydın D., Poly(Acrylamide-Sepiolite) Composite Hydrogels: Preparation, Swelling and Dye Adsorption Properties, Polymer Bulletin, 57(2): 231–241 (2006).
[33] WOS. Available online:
        http://apps.webofknowledge.com (accessed on 24 April 2022)
[34] Kofinas P., Kioussis D.R., Reactive Phosphorous Removal from Aquaculture and Poultry Productions Systems using Polymetric Hydrogels, Environ. Sci. Technol, 37: 423-427 (2003).
[35] Sepehrianazar A., Guven O., “Preparation, and Characterization of Semi-Interpenetrating Networks of Poly (Allylamine)/Poly Acrylamide and Their Use for the Removal of Trace Amounts Nitrophenol from Water”, IRAPconfrance, Antaliya-Turkey (Poster Presentation), (2006).
[36] Chamkouri H., Chamkouri M., A Review of Hydrogels, Their Properties and Applications in MedicineAm. J. Biomed. Sci. Res11(6): 485-493 (2021).
[37] Wichterle O. Lìm D., Hydrophilic Gels for Biological Use, Nature, 185: 117-118 (1960).
[38] Maldonado-Codina C., Efron N., Hydrogel Lenses – Materials and Manufacture: A Review, Optometry Practice, 4(2): 101–113 (2003).
[39] Lloyd A.W., Faragher R.G., Denyer S.P., Ocular Biomaterials and Implants, Biomaterials, 22(8): 769-785 (2001).
[40] Wichterle O. US3679504 (1972).
[41] Chromecek R., Bohdanecky M., Kliment K., Otoupalova J., Stoy V., Stol M., et al. US3575946 (1971).
[42] Kamath K.R., Park K., Biodegradable Hydrogels in Drug Delivery, Adv Drug. Deliv. Rev., 11(1-2): 59-84 (1993).
[43] Eccleston G.M., “The Design and Manufacture of Medicines”, Churchill Livingston Elsevier, 717 (2007).
[44] Madaghiele M., Demitri C., Sannino A., Ambrosio L., Polymeric Hydrogels for Burn Wound Care: Advanced Skin Wound Dressings and Regenerative Templates, Burns. Trauma., 2(4): 153-161 (2014).
[45] Turner T.D., Hospital Usage of Absorbent Dressings, Pharmaceutical Journal, 222: 421-424 (1979).
[46] Jones V., Grey J.E., Harding K.G., Wound Dressings, BMJ, 332(7544): 777-780 (2006).
[47] Beldon P., Basic Science of Wound HealingSurgery (Oxford), 28(9): 409-412 (2010).
[48] Murphy P.S., Evans G.R., Advances in Wound Healing: A Review of Current Wound Healing Products, Plast Surg Int., 2012: 190436 (2012).
[49] Agren M.S., Studies on zinc in wound healing, Acta Derm Venereol Suppl (Stockh), 154: 1-36 (1990).
[50] Stashak T.S., Farstvedt E., Othic A., Update on Wound Dressing: Indications and Best use, Clin Tech Equine Pract, 3: 148–163 (2004).
[51] Hoare T.R., Kohane D.S., Hydrogels in Drug Delivery: Progress and Challenges, Polymer, 49: 1993-2007 (2008).
[52] Vashist A., Vashist A., Gupta Y.K., Ahmad S.J., Recent Advances in Hydrogel Based Drug Delivery Systems for the Human Body, Mater. Chem. B, 2: 147 (2014).
[53] Elvira C, Mano J.F., San Román J., Reis R.L., Starch-based Biodegradable Hydrogels with Potential Biomedical Applications as Drug Delivery Systems, Biomaterials, 23(9): 1955-1966 (2002).
[54] Bierbrauer F., “Hydrogel Drug Delivery: Diffusion Models”, Internal Report, (2005).
[55] Lowman A.M., Peppas N.A., “Hydrogels” In: E. Mathiowitz, Ed. "Encyclopedia of Controlled Drug Delivery”, John Wiley & Sons, Inc., New York, 139 (1999).
[56] Gupta P., Vermani K., Garg S., Hydrogels: from Controlled Release to pH-Responsive Drug Delivery, Drug. Discov Today, 7(10): 569-579 (2002).
[57] Oztop H.N., Akyildiz F., Saraydin D., Poly(Acrylamide/Vinyl Sulfonic Acid) Hydrogel for Invertase Immobilization, MRT., 83(12): 1487-1498 )2020).
[58] Sepehrianazar A., Guven O., “Preparation, and Characterization of Semi-interpenetrating Networks of poly(allylamine)/poly acrylamide and Their Use for the Removal of Trace Amounts Nitrophenol from Water”. IRAP Conference Antalya-Turkey (Poster presentation), (2006).
[59a] Lee K.Y., Mooney D.J., Hydrogels for Tissue Engineering, Chem Rev., 101(7): 1869-1879 (2001).
[60] Chapekar M.S., Tissue Engineering: Challenges and Opportunities, J. Bio. Mat. Res., 53(6): 617-620 (2000).
[61] Drury J.L., Mooney D.J., Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications, Biomaterials, 24: 4337–4351 (2003).
[62] Place E.S., George J.H., Williams C.K., Stevens M.M., Synthetic Polymer Scaffolds for Tissue Engineering, Chem. Soc. Rev., 38: 1139-1151 (2009).
[63] Omidian H., Rocca J.G., Park K., Advances in Super Porous Hydrogels, J. Cont. Rele., 102(1): 3-12 (2005).
[65] Sannino A., Demitri C., Madaghiele M., Biodegradable Cellulose-based Hydrogels: Design and Applications, Materials, 2(2): 353–373 (2009).
[66]  CW. US4472327, (1984). Karadağ E., Saraydin D., Caldiran Y., Guven O., Swelling Studies of γpolymeric Acrylamide/Crotonic Acid Hydrogels as Carriers for Agricultural uses, Polymers for Advanced Technologies, 11(2): 59-68 (2000).
[67] Jozaghkar M.R., Sepehrian Azar A., Ziaee F., Preparation, Characterization, and Swelling Study of N,N’-Dimethylacrylamide/Acrylic Acid Amphiphilic Hydrogels in Different Conditions, Polymer Bulletin, 79: 5183-5195 (2021).
[68] Jozaghkar M.R., Sepehrian Azar A., Ziaee F., Preparation, Assessment and Swelling Study of Amphiphilic Acrylic Acid/Chitosan based Semi-Interpenetrating Hydrogels, Tu. J. Che., 46: 499-505 (2022).
[69] Shin M.S., Kim S.J., Park S.J., Lee Y.H., Kim S.I., Synthesis and Characteristics of the Interpenetrating Polymer Network Hydrogel Composed of Chitosan and Polyallylamine, J. Appl. Poly. Sci, 86(2): 498-503 (2002).
[70] Maskawat Marjub M., Rahman N., Dafader N.C., Sultana Tuhen F., Sultana S., Tasneem Ahmed F., Acrylic Acid-Chitosan Blend Hydrogel: A Novel Polymer Adsorbent for Adsorption of Lead(II) and Copper(II) Ions from Wastewater, Journal of Polymer Engineering, 39(10): 883–891 (2019).
[71] Torrado S., Prada P., Paloma M., Torrado S., Chitosan-Poly(Acrylic) Acid Polyionic Complex: in Vivo Study to Demonstrate Prolonged Gastric Retention, Biomaterials, 25(5): 917–923 (2004).
[72] Seyfloo H., Sepehrianazar A., Poly(Acrylic Acid)−Poly(Ethylenimine) Amphiphilic Hydrogels; Preparation, Characterization, Swelling, and Kinetics Study. (In Press)
[73a] Poursaleh M., Sepehrianazar A., 2-Acrylamide-2-Methyl Propane Sulfonic Acid Hydrogels; Preparation, Characterization, and the Removal of Heavy Metals Pb2+, Cu2+ from Wastewater., IJCCE, (In Press)
[73b] Poursaleh M., Sepehrianazar, A., Preparation and Characterization of Acrylamido-2-Methyl Propane Sulfonic Acid (AMPS), and Acrylamide (AAm) Co-hydrogel, and its Applications in Removal of Heavy Metals (Cu+2, Pb+2), IJCCE, (In Press).
[74] Yetimoğlu E.K., Kahraman M.V., Ercan Ö., Akdemir Z.S., Kayaman Apohan N., N-Vinylpyrrolidone/Acrylic Acid/2-Acrylamido-2-Methylpropane Sulfonic Acid based Hydrogels: Synthesis, Characterization and their Application in the Removal of Heavy Metals, React. Funct. Polym., 67(5): 451-460 (2007).