Adsorption of Methyl Orange on Bentonite: Design, Modeling, and Analysis of Experiments

Document Type : Research Article

Authors

Laboratory of Structure, Elaboration and Applications of Molecular Materials (S.E.A.2M.), Department of Process Engineering, Faculty of Science and Technology, University of Mostaganem, B.P. 981, R.P., Mostaganem 27000, ALGERIA

Abstract

The study examines the possibility of removing Methyl Orange (MO) from aqueous solutions using crude bentonite. SEM-EDX (scanning electron microscopy) and XRD (X-Ray Diffraction) analyses were performed to characterize the material. Batch experiments were performed on the adsorption process to study the effect of contact time, pH, concentration, and temperature. The results indicate that the equilibrium reaches after 2 h of contact. The MO adsorption followed the Langmuir-Freundlich and Baudu models with a maximum adsorption capacity of 308 mg/g. The adsorbed capacity of the material is best at pH=3. The adsorption capacity increases with temperature.  In addition, the Central Composite Design (CCD) in Response Surface Methodology (RSM) and Artificial Neural Network (ANN) were used to evaluate the simultaneous interactions of independent variables. The results suggest that the initial concentration was the dominant parameter in the adsorption process. The monolayer model with two energies derived from statistical physics can be adapted to interpret the adsorption data. Physical adsorption forces were predicted to be responsible for the removal of the dye. This study provides new information on the adsorption mechanisms of pollutants commonly found in water.

Keywords


[2] Bessaha F., Marouf-Khelifa K., Batonneau-Gener I., Khelifa A., Characterization and Application of Heat-Treated and Acid-Leached Halloysites in the Removal of Malachite Green: Adsorption, Desorption, and Regeneration Studies, Desalin. Water Treat., 57(31): 14609–14621 (2016).
[3] Mohamed H.S., Soliman N.K., Moustafa A.F., Abdel-Gawad O.F., Taha R.R., Ahmed S.A., Nano Metal Oxide Impregnated Chitosan-4-Nitroacetophenone for Industrial dye Removal, Int. J. Environ. Anal. Chem., 101(13): 1850–1877 (2021).
[4] Bessaha F., Mahrez N., Marouf-Khelifa K., Çoruh A., Khelifa A., Removal of Congo red by Thermally and Chemically Modified Halloysite: Equilibrium, FTIR Spectroscopy, and Mechanism Studies , Int. J. Environ. Sci. Technol., 16(8): 4253–4260 (2019).
[5] Pourabadeh A., Baharinikoo L., Shojaei S., Mehdizadeh B., Davoodabadi Farahani M., and Shojaei S., Experimental Design and Modelling of Removal of Dyes Using Nano-Zero-Valent Iron: A Simultaneous Model , Int. J. Environ. Anal. Chem., 100(15): 1707–1719 (2020).
[6] Bessaha G., Bessaha F., Bendenia S., Khelifa A., Exchanged Zeolite Adsorbent for Removing Cr(VI): Kinetics, Thermodynamics and Adsorption Mechanism, Int. J. Environ. Anal., Chem., 1–19 (2022).
[7] Mahrez N., Bessaha F., Marouf-Khelifa K., Çoruh A., Khelifa A., Performance and Mechanism of Interaction of Crystal Violet with Organohalloysite, Desalin. Water Treat., 207: 410–419 (2020).
[8] Rahman O., Rahman M.M., Maniruzzaman M., Removal of dye and Heavy Metals from Industrial Wastewater by Activated Charcoal-Banana Rachis Cellulose Nanocrystal Composites Filter, Int. J. Environ. Anal. Chem., 1–19 (2022).
[9] Karthick Raja Namasivayam S., Pattukumar V., Samrat K., Kumar J.A., Arvind Bharani R.S., Alothman A.A., Osman S.M., Tran V.A., Rajasimman M., Evaluation of Methyl Orange Adsorption Potential of Green Synthesized Chitosan-Silver Nanocomposite (CS–AgNC) and its Notable Biocompatibility on Freshwater Tilapia (Oreochromis Nitoticus), Chemosphere, 308: 135950 (2022).
[11] Msaadi R., Yahia A., Sassi W., Ammar S., Adsorption of Methyl Orange onto Perlite: Optimization, Adsorption Kinetics, and Thermodynamic Studies, Chem. Africa, (2022).
[12] Mirzaei D., Zabardasti A., Mansourpanah Y., Sadeghi M., Farhadi S., Efficacy of Novel NaX/MgO–TiO2 Zeolite Nanocomposite for the Adsorption of Methyl Orange (MO) Dye: Isotherm, Kinetic and Thermodynamic Studies , J. Inorg. Organomet. Polym. Mater., 30(6): 2067–2080 (2020).
[13] Yang J., Shojaei S., Shojaei S., Removal of Rudg and dye from Aqueous Solutions by Graphene Oxide: Adsorption Studies and Chemometrics Methods , Npj Clean Water, 5(1): 5 (2022).
[14]  Belkassa K., Bessaha F., Marouf-Khelifa K., Batonneau-Gener I., Comparot J., Khelifa A., Physicochemical and Adsorptive Properties of a Heat-Treated and Acid-Leached Algerian Halloysite , Colloids Surfaces A Physicochem. Eng. Asp., 421: 26–33 (2013).
[15] Salaa F., Bendenia S., Lecomte-Nana G.L., Khelifa A., Enhanced Removal of Diclofenac by an Organohalloysite Intercalated Via a Novel Route: Performance and Mechanism, Chem. Eng. J., 396(18):125226 (2020).
[16] Shojaei S., Shojaei S., Optimization of Process Variables by the Application of Response Surface Methodology for dye Removal Using Nanoscale Zero-Valent Iron. Int. J. Environ. Sci. Technol., 16(8): 4601–4610 (2019).
[17] Fernandes C.D., Nascimento V.R.S., Meneses D.B., Vilar D.S., Torres N.H., Leite M.S., Vega Baudrit J.R., Bilal M., Iqbal H.M.N., Bharagava R.N., Egues S.M., Romanholo Ferreira L.F., Fungal Biosynthesis of Lignin-Modifying Enzymes From Pulp Wash and Luffa Cylindrica for Azo Dye RB5 Biodecolorization Using Modeling by Response Surface Methodology and Artificial Neural Network , J. Hazard. Mater., 399  (2020).
[20] Hafeez A., Ammar Taqvi S.A., Fazal T., Javed F., Khan Z., Amjad U.S., Bokhari A., Shehzad N., Rashid N., Rehman S., Rehman F., Optimization on Cleaner Intensification of Ozone Production Using Artificial Neural Network and Response Surface Methodology: Parametric and Comparative Study, J. Clean. Prod., 252: 119833 (2020).
[21] Zhirong L., Azhar Uddin M., Zhanxue S., FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-Bentonite, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 79(5): 1013–1016 (2011).
[23] Pan J., Zhou L., Chen H., Liu X., Hong C., Chen D., Pan B., Mechanistically Understanding Adsorption of Methyl Orange, Indigo Carmine, and Methylene Blue onto Ionic/Nonionic Polystyrene Adsorbents., J. Hazard. Mater., 418: 126300 (2021).
[24] Ba Mohammed B., Lgaz H., Alrashdi A.A., Yamni K., Tijani N., Dehmani Y., Hamdani H. El, Chung I.-M., Insights into Methyl Orange Adsorption Behavior on a Cadmium Zeolitic-Imidazolate Framework Cd-ZIF-8: A joint Experimental and Theoretical Study,” Arab. J. Chem., 14(1): 102897 (2021).
[26] Giles C., H., DAVID S., A General Treatment and Classification of the Solute Adsorption Isotherm I. Theoretical, J. Colloid Interface Sci., 47: 755–765 (1974).
[27] Jasrotia R., Singh J., Mittal S., Singh H.S., Synthesis of CTAB Modified Ferrite Composite for the Efficient Removal of Brilliant Green Dye, Int. J. Environ. Anal. Chem., (2022).
[28] Onu C.E., Nwabanne J.T., Ohale P.E., Asadu C.O., Comparative Analysis of RSM, ANN and ANFIS and the Mechanistic Modeling in Eriochrome black-T dye Adsorption Using Modified Clay, South African J. Chem. Eng., 36: 24–42 (2021).
[29] Hosseini S., Khan M.A., Malekbala M.R., Cheah W., Choong, T.S.Y., Carbon Coated Monolith, A Mesoporous Material for the Removal of Methyl Orange from Aqueous Phase: Adsorption and Desorption Studies, Chem. Eng. J., 171: 1124–1131 (2011).
[30] Cheah W., Hosseini S., Khan M.A., Chuah T.G., Choong T.S.Y., Acid Modified Carbon Coated Monolith for Methyl Orange Adsorption, Chem. Eng. J., 215–216: 747–754 (2013).
[31] Li Y., Suia K., Liub R., Zhaoa X., Zhang Y., Lianga H., Xia Y., Energy Procedia Removal of Methyl Orange from Aqueous Solution by Calcium Alginate / Multi-walled Carbon Nanotubes Composite Fibers, Int. Conf. Futur. Energy, Environ. Mater. Remov., 16: 863–868 (2012).
[32] Chen H., Zhao J., Wu J., Dai G., Isotherm, Thermodynamic, Kinetics and Adsorption Mechanism Studies of Methyl Orange by Surfactant Modified Silkworm Exuviae, J. Hazard. Mater., 192: 246–254 (2011).
[33] Zaghloul A., Benhiti R., Ait Ichou A., Carja G., Soudani A., Zerbet M., Sinan F., Chiban M., Characterization and Application of MgAl Layered Double Hydroxide for Methyl Orange Removal from Aqueous Solution, Mater. Today Proc., 37: 3793–3797 (2020).
[34] Habiba U., Siddique T.A., Jia J., Lee L., Joo T.C., Ang B.C., Afifi A.M., Adsorption Study of Methyl Orange by Chitosan/Polyvinyl Alcohol/Zeolite Electrospun Composite Nanofibrous Membrane, Carbohydr. Polym., 1–20    (2018).
[35] Nguyen L.X., Do, P.M.T., Phan T.T.T., Nguyen C.H., Downes N.K., Removal of Anions PO4- and Methyl Orange Using Fe-Modified Biochar Derived from Rice StrawIran. J. Chem. Chem. Eng. (IJCCE), 42(3): 8213–834 (2023).
[36] Shojaei S., Nouri A., Baharinikoo L., Davoodabadi Farahani M., Shojaei S., Removal of the Hazardous Dyes through Adsorption Over Nanozeolite-X: Simultaneous Model, Design and Analysis of Experiments, Polyhedron,  196: 114995 (2021).
[37] Vainio A., Pulkka A., Paloniemi R., Varho V., Tapio P., Citizens’ Sustainable, Future-Oriented Energy Behaviours in Energy Transition, J. Clean. Prod., 245(xxxx): 118801 (2020).
[38] Pedram T., Esamp haghi Z., Ahmadpour A., Nakhaei A., Optimization of Adsorption Parameters Using Central Composite Design for the Removal of Organosulfur in Diesel Fuel by Bentonite-Supported Nanoscale NiO-WO3, Iran. J. Chem. Chem. Eng. (IJCCE), 41(3): 808–820 (2022).
[40] Bakhtiari G., Bazmi M., Abdouss M., Royaee S.J., Adsorption and Desorption of Sulfur Compounds by Improved Nano Adsorbent: Optimization Using Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), 36(4): 69–79  (2017).
[43] Shojaei S., Shojaei S., Band S.S., Abbas A., Farizhandi K., Application of Taguchi Method and Response Surface Methodology into the Removal of Malachite Green and Auramine ‑ O by NaX Nanozeolites, Sci. Rep., 1–13 (2021).
[44] Vinayagam R., Dave N., Varadavenkatesan T., Rajamohan N., Sillanpää M., Nadda A.K., Govarthanan M., Selvaraj R., Artificial Neural Network and Statistical Modelling of Biosorptive Removal of Hexavalent Chromium Using Macroalgal Spent Biomass, Chemosphere, 296: 133965 (2022).
[45] Mobarak M., Mohamed E.A., Selim A.Q., Mohamed F.M., Sellaoui L., Bonilla-Petriciolet A., Seliem M.K., Statistical Physics Modeling and Interpretation of Methyl Orange Adsorption on High–Order Mesoporous Composite of MCM–48 Silica with Treated Rice Husk, J. Mol. Liq., 285: 678–687 (2019).
[46] Ward T.M. Upchurch R.P., Herbicide Adsorption, Role of Amido Group in Adsorption Mechanisms, J. Agric. Food Chem., 13: 334–340 (1965).
[48] Dhaouadi F., Sellaoui L., Badawi M., Reynel-Ávila H.E., Mendoza-Castillo D.I., Jaime-Leal J.E., Bonilla-Petriciolet A., Lamine A. B., Statistical Physics Interpretation of the Adsorption Mechanism of Pb2+, Cd2+ and Ni2+ on Chicken Feathers, J. Mol. Liq., 319: 114168 (2020).