Synthesis of Hydroxyapatite from Budu Waste by Calcination Method

Document Type : Research Article


1 Chemistry Program, Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, THAILAND

2 Chemistry Department, Faculty of Mathematics and Natural Science, Universitas Negeri Malang (UM), Malang, INDONESIA

3 Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, THAILAND

4 Biology Program, Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, THAILAND

5 The Halal Science Center, Chulalongkorn University, Bangkok, THAILAND


Fish bones contain high calcium, which makes them a good raw material for the preparation of calcium hydroxyapatite (HAp). HAp is usually prepared from fresh fish bones because it has low impurity but there are many waste fish bones from food processing. In this work, HAp was synthesized from Budu waste by maceration process and calcination. Obtained products were characterized by X-ray diffraction (XRD), Fourier transform spectroscopy (FT-IR), and thermal analysis. When the calcination was higher than 600 °C, the product showed a mixture of hydroxyapatite [Ca5(PO4)3OH] as a major phase and merrillite [Ca9MgNa(PO4)7] as a minor phase. The amount of merrillite was increased with an increase in calcination temperature.


Main Subjects

[1] Dorozhkin S.V., Bioceramics of Calcium Orthophosphates, Biomaterials, 31(7): 1465–1485 (2010).
[2] Dimović S., Smiciklas I., Plećas I., Antonović D., Mitrić M., Comparative Study of Differently Treated Animal Bones For Co2+ Removal, J. Hazard. Mater., 164(1): 279–87 (2009).
[3] Pal A., Paul S., Choudhury A.R., Balla V.K., Das M., Sinha A., Synthesis of Hydroxyapatite from Lates Calcarifer Fish Bone for Biomedical Applications, Mater. Lett., 203: 89–92 (2017).
[4] Ferraro V., Carvalho A.P., Piccirillo C., Santos M.M., Castro P.M.L., Pintado M.E., Extraction of High Added Value Biological Compounds from Sardine, Sardine-Type Fish and Mackerel Canning Residues — A Review, Mater. Sci. Eng. C, 33(6): 3111–3120 (2013).
[5] Cui H., Yang X., Qin J., Tang H., Liu H., Li Y., Hydrothermal Synthesis and Characterisation of Glutamine-Modified Rod-Like Hydroxyapatite Nanoparticles, Micro. Nano Lett., 7(12): 1292–1295 (2012).
[6] Akram M., Ahmed R., Shakir I., Ibrahim W.A.W., Hussain R., Extracting Hydroxyapatite and Its Precursors From Natural Resources, J. Mater. Sci., 49: 1461–1475 (2014).
[7] Ozawa M., Suzuki S., Microstructural Development of Natural Hydroxyapatite Originated from Fishbone Waste Through Heat Treatment, J. Am. Ceram. Soc., 85(5): 1315–1317 (2002).
[8] Coelho T.M., Nogueira E.S., Weinand W.R., Lima W.M., Steimacher A., Medina A.N., Baesso M.L., Bento A.C., Thermal Properties of Natural Nanostructured Hydroxyapatite Extracted from Fish Bone Waste, J. Appl. Phys., 101(8): 84701 (2007).
[9] Boutinguiza M., Pou J., Lusquiños F., Comesaña R., Riveiro A., Production of Calcium Phosphate Nanoparticles By Laser Ablation In Liquid, Phys. Procedia, 12: 54–59 (2011).
[10] Lamkhao S., Phaya M., Jansakun C., Chandet N., Thongkorn K., Rujijanagul G., Bangrak P., Randorn C., Synthesis of Hydroxyapatite with Antibacterial Properties Using a Microwave-Assisted Combustion Method, Sci. Rep., 9: 4015 (2019).
[11] Buitrago-Vásquez M., Ossa-Orozco C.P., Hydrothermal Synthesis of Hydroxyapatite Nanorods Using A Fruit Extract Template, DYNA, 85(204): 283-288 (2018).
[12] Sánchez-Hernández A.K., Martínez-Juárez J., Gervacio-Arciniega J.J., Silva-González R., Robles-Águila M.J., Effect of Ultrasound Irradiation on the Synthesis of Hydroxyapatite/Titanium Oxide Nanocomposites, Crystals, 10(11): 1-13 (2020).
[13] Xiaojun G., Dai L., Synthesis of Hydroxyapatite Containing Some Trace Amounts Elements in Simulated Body Fluids, Iran. J. Chem. Chem. Eng. (IJCCE), 38(1): 83-91 (2019).
[15] Mustafa N., Ibrahim M.H.I, Asmawi R., Amin A.M., Hydroxyapatite Extracted from Waste Fish Bones and Scales via Calcination Method, Appl. Mech. Mater., 773–774: 287–290 (2015).
[16] Ratna Sunil B., Jagannatham M., Producing Hydroxyapatite from Fish Bones by Heat Treatment, Mater. Lett., 185: 411-414 (2016).
[17] Senthil R., Vedakumari S.W., Sastry T.P., Hydroxyapatite and Demineralized Bone Matrix from Marine Food Waste – A Possible Bone Implant, Am. J. Mater. Synth. Process., 3(1): 1-6 (2018).
[18] Permatasari H.A., Wati R., Anggraini R.M., Almukarramah A., Yusuf Y., Hydroxyapatite Extracted from Fish Bone Wastes by Heat Treatment. Key Eng. Mater., 840: 318–323 (2020).
[19] Latif A.F.A., Mohd Pu’ad N.A.S., Ramli N.A.A., Muhamad M.S., Abdullah H.Z., Idris M.I., Lee T.C., Extraction of Biological Hydroxyapatite from Tuna Fish Bone for Biomedical Applications, Mater. Sci. Forum, 1010: 584–589 (2020).
[20] Lolo J.A., Ambali D.P.P., Jefriyanto W., Handayani D., Afridah W., Wikurendra E.A., Amalia R., Syafiuddin A., Synthesis and Characterization of Hydroxyapatite Derived from Milkfish Bone by Simple Heat Treatments, Biointerface Res. Appl. Chem., 12(2): 2440 – 2449 (2022)
[21] Balamurugan A., Rebelo A.H., Lemos A.F., Rocha J.H., Ventura J.M., Ferreira J.M., Suitability Evaluation Of Sol-Gel Derived Si-substituted Hydroxyapatite for Dental and Maxillofacial Applications Through in Vitro Osteoblasts Response, Dent mater., 24(10): 1374–1380 (2008).
[22] Kumar G.S., Rajendran S., Karthi S., Govindan R., Girija E. K., Karunakaran G.,  Kuznetsov D., Green Synthesis and Antibacterial Activity of Hydroxyapatite Nanorods for Orthopedic Applications, MRS Comm., 7: 183–188 (2017).
[24] Pal A., Paul S., Choudhury A.R., Balla V.K., Das M., Sinha A., Synthesis of Hydroxyapatite from Lates Calcarifer Fish Bone for Biomedical Applications, Mater. Lett., 203: 89-92 (2017).
[25] Fu J., He C., Xia B., Li Y., Feng Q., Yin Q., Shi X., Feng X., Wang H., Yao H., C-axis Preferential Orientation of Hydroxyapatite Accounts for the High Wear Resistance of The Teeth of Black Carp (Mylopharyn godonpiceus), Sci. Rep., 6: 23509 (2016).
[26] Rincón-López J.A., Hermann-Muñoz J.A., Giraldo-Betancur A.L., De Vizcaya-Ruiz A., Alvarado-Orozco J.M., Muñoz-Saldaña J., Synthesis, Characterization and In Vitro Study of Synthetic and Bovine-Derived Hydroxyapatite Ceramics:
A Comparison
, Materials (Basel), 11(3): 333 (2018).
[27] Bigi A., Ripamonti A., Structure Refinements of Lead-Substituted Calcium Hydroxyapatite by X-Ray Powder Fitting, Acta Cryst., 45(3): 247-251 (1989).
[28] Lee K.Y., Han Y.C., Suh D.J., Park T.J., Pb-Substituted Hydroxyapatite Catalysts Prepared by Coprecipitation Method for Oxidative Coupling of Methane, Stud. Surf. Sci. Cat.119: 385-390 (1998).
[29] John M.H., Bradley L.J., John R., The Crystal Chemistry of Whitlockite and Merrillite and The Dehydrogenation of Whitlockite to MerrilliteAm. Mineral., 93(8-9): 1300–1305 (2008).
[30] Mohd Pu'ad N.A.S., Koshy P., Abdullah H.Z., Idris M.I., Lee T.C., Syntheses of Hydroxyapatite from Natural Sources, Heliyon, 5(5): e01588 (2019).
[31] Petkova V., Yaneva V., Thermal Behavior and Phase Transformations of Nanosized Carbonate Apatite (Syria)J. Therm. Anal. Calorim., 99: 179–189 (2010).
[32] Shavandi A., Bekhit A. El-Din A., Ali. A., Sun Z., Synthesis of Nano-Hydroxyapatite (Nha) from Waste Mussel Shells Using A Rapid Microwave Method, Mater. Chem. Phys., 149–150: 607-616 (2015).
[33] Meejoo S., Maneeprakorn W., Winotai P., Phase and Thermal Stabilityof Nanocrystalline Hydroxyapatite Prepared via Microwave Heating, Thermochimi. Acta, 447(1): 115-120 (2006).
[34] Salma-Ancane K., Stipniece L., Borodajenko N., Jakovlevs D., Berzina-Cimdina L., Incorporation of Magnesium Ions into Synthetic Hydroxyapatite: Synthesis and Characterization. Key Eng. Mater., 527: 26–31 (2012).
[35] Cacciotti I., Bianco A., Lombardi M., Montanaro L., Mg-Substituted Hydroxyapatite Nanopowders: Synthesis, Thermal Stability and Sintering Behaviour, J. Eur. Ceram. Soc., 29(14): 2969-2978 (2009).
[36] Ooi C.Y., Hamdi M., Ramesh S., Properties of Hydroxyapatite Produced by Annealing of Bovine Bone, Ceram. Int., 33(7): 1171-1177 (2007).
[37] Samira M.S., Khairi M.T., Abdelsattar M.S., Lotfi I.A.S., Faten A.M., Synthesis and Characterization of Hydroxyapatite Contain Chromium, Biophys. Chem., 3(4): 278-282 (2012).
[39] Sobczak-Kupiec A., Olender E., Malina D., Tyliszczak B., Effect of Calcination Parameters on Behavior of Bone Hydroxyapatite in Artificial Saliva and Its Biosafety, Mater. Chem. Phys., 206: 158-165 (2018).
[40] Ou‐Yang H., Paschalis E.P., Boskey A.L., Mendelsohn R., Two‐Dimensional Vibrational Correlation Spectroscopy of In Vitro Hydroxyapatite Maturation, Biopolymers, 57(3):129–139 (2000).