Methanol Optimization in a DBD Plasma Reactor: Using RSM Method and Variables Survey

Document Type : Research Article

Authors

Department of Chemical Engineering, Islamic Azad University of Mahshahr, Mahshahr, I.R. IRAN

Abstract

In this study, direct conversion of methane to methanol in the plasma process was attended. Besides, RSM modeling was used to optimize and evaluate parameters such as voltage, the flow rate of CH4, Ar, and external electrode length. RSM prediction model by the desired condition including minimized Ar (20 mL/min), O2 (2 mL/min), CH4 (2 mL/min), and voltage (4 kV) was used to determine the effect of Ar and CH4 in reactions. The results showed that increasing the Ar flow from 20 to 100 mL/min led to less methanol mole percent. On the other hand, enhancement in methane flow rate from 2 to 12 mL/min was the reason for raising the methanol mole percent at the reactor outlet. To determine how modifying the length of the external electrode affected the mole percent of methanol, the length was lowered from 12.5 to 2 cm, clearly reducing the amount of methane converted. However, it was effective in raising the methanol mole percent to 3% in E.EFF 0.13 mmole/kJ and length of electrode 4 cm. As well as the methanol mole percent in the least energy efficiency E.EFF 0.045 mmole/kJ detected at 2.27%. To summarize, in DBD plasma reactor by direct conversion of methane, increasing in voltage and Ar flow rate had a significant influence on the progress of the process which had an unfavorable effect on methanol mole percent. Meanwhile, the enhancement of CH4   flow rate had an impressive effect on the raising of methanol. Furthermore, the influence of oxygen flow was negligible.

Keywords

Main Subjects


[1] Taghvaei H., Kheirollahivash M., Ghasemi M., Rostami P., Rahimpour M. R., Noncatalytic Upgrading of Anisole in an Atmospheric DBD Plasma Reactor: Effect of Carrier Gas Type, Voltage, and Frequency, Energy and Fuels, 28(4): 2535–2543 (2014).
[2] Liu C., Marafee A., Hill B., Xu G., Mallinson R., Lobban L., Oxidative Coupling of Methane with ac and dc Corona Discharges, Industrial & Engineering Chemistry Research, 35(10): 3295-3301 (1996).
[3] Liu C. J., B Xue., Eliasson B., He F., Li Y., Xu G.H., Methane Conversion to Higher Hydrocarbons in the Presence of Carbon Dioxide Using Dielectric-Barrier Discharge Plasmas, Plasma Chem. Plasma Process., 21 (3): 301–310 (2001).
[4] Nishida Y., H. Chiang C., T. Chen C., Cheng C.Z., Efficient Production of Hydrogen by DBD Type Plasma Discharges, IEEE Trans. Plasma Sci., 42(12): 3765–3771 (2014).
[5] Kim S.S., Kim J., Lee H., Na B.K., Song H.K., Methane Conversion Over Nanostructured Pt/γ-Al2O3 Catalysts in Dielectric-Barrier Discharge, Korean J. Chem. Eng., 22(4): 585–590 (2005).
[6] Liu C.-J., Mallinson R., Lobban L., Nonoxidative Methane Conversion to Acetylene over Zeolite in a Low Temperature Plasma, Journal of Catalysis, 179(1): 326-334 (1998).
[7] Malik M.A. Jiang X. Z., The CO2 Reforming of Natural Gas in a Pulsed Corona Discharge Reactor, Plasma chemistry and plasma processing, 19: 505-512 (1999).
[8] Yao S.L., et al., Selective Oxidation of Methane Using a Non-Thermal Pulsed Plasma, Energy and Fuels, 14(2): 459–463 (2000).
[9] Eliasson B., Liu C.J., Kogelschatz U., Direct Conversion of Methane and Carbon Dioxide to Higher Hydrocarbons Using Catalytic Dielectric-Barrier Discharges with Zeolites, Ind. Eng. Chem. Res., 39(5): 1221–1227 (2000).
[10] Gesser H.D., Hunter N.R., A Review of C-1 Conversion Chemistry, Catalysis Today, 4(3): 183-189 (1998).
[11] Larkin D.W., Caldwell T.A., Lobban L. L., Mallinson R.G., Oxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature Electric Discharges, Energy & Fuels, 12 (4): 740-744 (1998).
[13] Indarto A., Choi J.W., Lee H., Song H.K., The Kinetic Studies of Direct Methane Oxidation to Methanol in the Plasma Process, Chinese Sci. Bull., 53(18): 2783–2792, 2008.
[14] Aziznia A., Bozorgzadeh H.R., Seyed-Matin N., Baghalha M., Mohamadalizadeh A., Comparison of Dry Reforming of Methane in Low Temperature Hybrid Plasma-Catalytic Corona with Thermal Catalytic reactor over Ni/γ-Al2O3, J. Nat. Gas Chem., 21(4): 466–475, 2012.
[15] Khoshtinat M., Amin N.A.S., Noshadi I., A Review of Methanol Production from Methane Oxidation via Non-Thermal Plasma Reactor, World Acad. Sci. Eng. Technol., 62(2): 354–358 (2010).
[16] Tang L. Huang H., Biomass Gasification Using Capacitively Coupled RF Plasma Technology, Fuel, 84 (16): 2055–2063 (2005).
[17] Wang B., Yan W., Ge W., Duan X., Methane Conversion into Higher Hydrocarbons with Dielectric Barrier Discharge Micro-Plasma Reactor, J. Energy Chem., 22(6): 876–882 (2013).
[18] Fazeli S.M., Bozorgzadeh H.R., Ravari F., Sadeghzadeh Ahari J., Dry reforming of Methane Using Cold Plasma; Kinetic Model Study, Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 257–265 (2020).
[19] Huang A., Xia G., Wang J., Suib S. L., Hayashi Y., Matsumoto H., CO2 Reforming of CH4 by Atmospheric Pressure ac Discharge Plasmas, J. Catal.,  189(2): 349–359 (2000).
[21] Indarto A., Choi J.-W., Lee H., Song H.K., A Brief Catalyst Study on Direct Methane Conversion Using a Dielectric Barrier Discharge, Journal of the Chinese Chemical Society, 54(4): 823-828 (2007)
[22] Chen L., Zhang X W., Huang L., Lei L.C., Partial Oxidation of Methane with Air for Methanol Production in a Post-Plasma Catalytic System, Chem. Eng. Process. Process Intensif., 48(8): 1333–1340 (2009).
[23] Kogelschatz U., Dielectric-barrier Discharges: Their History, Discharge Physics, and Industrial Applications, Plasma Chemistry and Plasma Processing, 23(1): 1-46 (2003).
[24] Kolb T., Voigt J.H., Gericke K.H., Conversion of Methane and Carbon Dioxide in a DBD Reactor: Influence of Oxygen, Plasma Chem. Plasma Process., 33(4): 631–646 (2013).
[25] Khalifeh O., Mosallanejad A., Taghvaei H., Rahimpour M. R., Shariati A., Decomposition of Methane to Hydrogen Using Nanosecond Pulsed Plasma Reactor with Different Active Volumes, Voltages and Frequencies, Appl. Energy, 169: 585–596 (2016).
[26] Namihira T.,  et al., Influence of Gas Flow Rate and Reactor Length on NO Removal Using Pulsed Power, IEEE Trans. Plasma Sci., 2(4): 592–598 (2001).
[27] Bahri M., Haghighat F., Rohani S., Kazemian H., Impact Of Design Parameters On The Performance Of Non-Thermal Plasma Air Purification System, Chem. Eng. J., 302: 204–212 (2016).
[28] Wang T.,  et al., Effect of Reactor Structure in DBD for Nonthermal Plasma Processing of NO in N2 at Ambient Temperature, Plasa Chem. Plasma Process, 32(6): 1189–1201 (2012).
[29] Boyer M. D., et al., Toward Fusion Plasma Scenario Planning for NSTX-U Using Machine-Learning-Accelerated Models, Boyer, Mark. In "Learning for Dynamics and Control", 698-707 (2020).
[30] Wehner W. P., Schuster E., Boyer M. D., Poli F. M., TRANSP-Based Optimization Towards Tokamak Scenario Development, Fusion Eng. Des, (2019).
[31] Piccione A., Berkery J.W., Sabbagh S.A., Andreopoulos Y., Physics-Guided Machine Learning Approaches to Predict the Ideal stability Properties of Fusion Plasmas, Nucl. Fusion, 60(4): (2020).
[32] Citrin, Jonathan, Sarah Breton, Federico Felici, Frederic Imbeaux, Aniel T., J Artaud. F., Baiocchi B., Bourdelle C., Camenen Y., Garcia J.., Real-Time Capable First Principle Based Modelling of Tokamak Turbulent Transport,  Nuclear Fusion, 55(9): 092001 (2015).
[33] Ba D., Boyaci I.H., Modeling and Optimization i: Usability of Response Surface Methodology, J. Food Eng., 78(3): 836–845 (2007).
[36] Tian Y., Zhang X., Wang Y., Cui Z., tang J., SF6 Abatement in a Packed Bed Plasma Reactor: Role of Zirconia Size and Optimization Using RSM, J. Ind. Eng. Chem.,.94: 205–216 (2021).
[37] Mansouri F., Khavanin A., Jafari A. J., Asilian H., Ghomi H.R., Mousavi S.M., Energy Efficiency Improvement in Nitric Oxide Reduction by Packed DBD Plasma: Optimization and Modeling Using Response Surface Methodology(RSM), Environ. Sci. Pollut. Res., 27(14): 16100–16109 (2020).
[38] Khoja A.H., Tahir M., Saidina Amin N.A., Process Optimization of DBD Plasma Dry Reforming of Methane Over Ni/La2O3[Sbnd]MgAl2O4 Using Multiple Response Surface Methodology, Int. J. Hydrogen Energy, 44(23): 11774–11787 (2019).
[39] Galedari M., Mehdipour M. Ghazi, Rashid S., Mirmasoomi, Photocatalytic Process for the Tetracycline Removal under Visible Light: Presenting a Degradation Model and Optimization Using Response Surface Methodology (RSM), Chem. Eng. Res. Des., 145: 323–333 (2019).
[41] Teknologi J., Faraliana N. Shazwani, Nor Azmi, Mohammed Evuti A., M. Ariffin Abu Hassan, Raja Ibrahim R.K., J. Bahru, Optimization of Non Thermal Plasma Reactor Performance for the Decomposition of Xylene, Jurnal Teknologi, 78(8): 165-171 (2016).
[42] Aghamir F.M., Nasser M., Amir-Hossein J., Mohammad-Ali E., Methanol Production in AC Dielectric Barrier Discharge, J. Plasma Fusion Res. SERIES, 6: 696-698 (2004).
[43] Nozaki T., Hattori A., Okazaki K., Partial Oxidation of Methane Using a Microscale Non-Equilibrium Plasma Reactor, Catal. Today, 98(4): 607–616 (2004).
[44] Shareei M., Taghvaei H., Azimi A., Shahbazi A., Mirzaei M., Catalytic DBD Plasma Reactor for Low Temperature Partial Oxidation of Methane: Maximization of Synthesis Gas and Minimization of CO2, Int. J. Hydrogen Energy, 44(60): 31873–31883 (2019).
[45] Tsuchiya T. Iizuka S., conversion of Methane to Methanol by a Low-Pressure Steam Plasma, J. Environ. Eng. Technol., 2(3): 35–39, (2013).
[46] Taghvaei H., Jahanmiri A., Rahimpour M. R., Shirazi M. M., Hooshmand N., Hydrogen Production Through Plasma Cracking of Hydrocarbons: Effect of Carrier Gas and Hydrocarbon Type, Chem. Eng. J., 226: 384–392 (2013).
[47] Hammer T., Kappes T., Baldauf M., Plasma Catalytic Hybrid Processes: Gas Discharge Initiation and Plasma Activation of Catalytic Processes, Catal. Today, 89(1–2): 5–14 (2004).
[48] Zhou L.M., Xue B., Kogelschatz U., Eliasson B., Partial Oxidation of Methane to Methanol with Oxygen or Air in a Nonequilibrium Discharge Plasma, Plasma Chem. Plasma Process., 18(3): 375–393 (1998).
[49] Patra A.K., Afshar R.K., Rowland J. M., Olmstead M.M., Mascharak P.K., Thermally Induced Stoichiometric and Catalytic O-Atom Transfer by a Non-Heme iron(III)-Nitro complex: First Example of Reversible {Fe-NO} 7↔FeIII-NO2 Transformation in the Presence of Dioxygen, Angew. Chemie - Int. Ed., 42(37): 4517–4521 (2003).
[50] Zanthoff H. Baerns M., Kinetics And Catalysis Oxidative Coupling of Methane in the Gas Phase. Kinetic Simulation and Experimental Verification, Industrial & Engineering Chemistry Research, 29( 1,2-10): 1990.
[51] Ouellette R. J Rawn. J. D., Alkanes and Cycloalkanes, in "Organic Chemistry Study Guide: Key Concepts, Problems, And Solutions", Elsevier (2014).      
[52] Genco J. I., Duke F.R., "The (C-H) Bond Dissociation Energy in the Methyl Group of Toluene", 746: United States Atomic Energy Commission, Technical Information Service (1956).
[53] Goebbert D.J., Velarde L., Khuseynov D., Sanov A., C-H Bond Dissociation Energy of Malononitrile, J. Phys. Chem. Lett., 1(4): 792–795 (2010).
[54] Taghvaei H., Jahanmiri A., Rahimpour M.R., Shirazi M.M., Hooshmand N., Hydrogen Production through Plasma Cracking of Hydrocarbons: Effect of Carrier Gas and Hydrocarbon Type, Chem. Eng. J., 226: 384–392 (2013).
[55] Khalifeh O., H. Taghvaei, Mosallanejad A., Rahimpour M.R., Shariati A., Extra Pure Hydrogen Production through Methane Decomposition Using Nanosecond Pulsed Plasma and Pt-Re Catalyst, Chem. Eng. J., 294: 132–145 (2016).
[56] Te Hsieh L., Lee W.J., Chen C.Y., Chang M.B., Chang H.C., Converting Methane by Using an RF Plasma Reactor, Plasma Chem. Plasma Process., 18(2): 215–239 (1998).
[57] Kim T.K. Lee W.G., Reaction between Methane and Carbon Dioxide to Produce Syngas in Dielectric Barrier Discharge System, J. Ind. Eng. Chem., 18(5): 1710–1714 (2012).
[58] Kasinathan P., Park S., Choi W.C., Hwang Y.K., Chang J.S., Park Y.K., Plasma-Enhanced Methane Direct Conversion Over Particle-Size Adjusted MOx/Al2O3(M = Ti and Mg) Catalysts, Plasma Chem. Plasma Process., 34(6): 1317–1330 (2014).
[61] Chawdhury P., Ray D., Vinodkumar T., Subrahmanyam C., Catalytic DBD Plasma Approach for Methane Partial Oxidation to Methanol under Ambient Conditions, Catal. Today, 337: 117–125 (2019).
[62] Chawdhury P., Ray D., Subrahmanyam C., Single Step Conversion of Methane to Methanol Assisted by Nonthermal Plasma, Fuel Process. Technol., 179: 32–41 (2018).
[63] Wang Y.-F., Tsai C.-H., M Shih., Hsieh L.-T., Chang W., Direct Conversion of Methane into Methanol and Formaldehyde in an RF Plasma Environment II: Effects of Experimental Parameters, Aerosol Air Qual. Res., 5(2): 211–224 (2005).