Inverse Estimation of the Wall Temperature in Stagnation Region of Impinging Flow on the Cylinder with Uniform Transpiration

Document Type : Research Article

Authors

1 Department of Mechanical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, I. R. IRAN

2 Department of Mechanical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran

3 Department of Mechanical Engineering, Technical and Vocational University (TVU), Mashhad, I. R. IRAN

4 Department of Civil Engineering, Shahrood Branch, Islamic Azad University, Shahrood, I. R. IRAN

Abstract

In this paper, for the first time, a numerical code based on the Levenberg–Marquardt method is presented to solve the inverse heat transfer problem of an annular jet on a cylinder with uniform transpiration and estimate the time-dependent wall temperature using temperature distribution at a point. Also, the effect of noisy data on the final result is studied. For this purpose, the immediate task is to solve the temperature with no dimensions and convection Heat transfer in a cylinder with a radial incompressible flow numerically. The free stream is steady, and the initial strain rate of flow is . The equations of momentum and energy are transformed into semi-similar equations using similarity variables. After discretizing the new equation system using the finite difference technique, it is solved by using the tri-diagonal matrix algorithm. After that, the wall temperature is calculated throughout using the Levenberg–Marquardt approach. This is a collaborative technique aimed at minimizing the least-square summation of the error values, where the error indicates the difference between the predicted and observed temperatures. This method exhibits considerable stability for noisy input data. In most cases, surface blowing decreases the prediction accuracy by displacement of the boundary layers from the surface, whereas suction acts vice versa.
The main reason for this study is that in many industrial applications, it is not possible to insert the sensor on the wall to measure the temperature of the wall the sensor can be inserted in another place and the wall temperature distribution can be obtained by inverse analysis (Determining of unknown boundary condition).

Keywords


[1] Huang C.H., Wang P., A Three-Dimensional Inverse Heat Conduction Problem in Estimating Surface Heat Flux by Conjugate Gradient Method, Int. J. Heat Mass Trans., 42(18): 3387-3403 (1999).
[2] Shiguemori E.H., Harter F.P., Campos Velho H.F., Dasilva J.D.S., Estimation of Boundary Condition
in Conduction Heat Transfer by Neural Networks
, TendênciasemMatemáticaAplicada e Computacional., 3: 189-195 (2002).
[3] Volle F., Maillet D., Gradeck M., Kouachi A., Lebouché M., Practical Application of Inverse Heat Conduction for Wall Condition Estimation on a Rotating Cylinder, Int. J. Heat Mass Trans., 52(2): 210-221 (2009).
[4] GolbaharHaghighi M.R., Eghtesad M., Malekzadeh P., Necsulescu D.S., Three-Dimensional Inverse Transient Heat Transfer Analysis of Thick Functionally Graded Plates, Ene. Convers. Manage., 50(3): 450-457 (2009).
[5] Su J., Neto A., Two Dimensional Inverse Heat Conduction Problem of Source Strength Estimation in  Cylindrical Rods, Applied Mathematical Modeling., 25(10): 861- 872 (2001).
[6] Hsu P.T., Estimating the Boundary Condition in a 3D Inverse Hyperbolic Heat Conduction Problem, Applied   Mathematics and Computation, 177(2): 453- 464 (2006).
[7] Shi J., Wang J., Inverse Problem of Estimating Space and Time Dependent Hot Surface Heat Flux in Transient Transpiration Cooling Process, Int. J. Thermal Sc., 48(7): 1398-1404 (2009).
[8] Ling X., Atluri S.N., Stability Analysis for Inverse Heat Conduction Problems, Computer Modeling in Engineering & Sciences., 13(3): 219-228 (2006).
[9] Jiang  B.H., Nguyen T.H., Prud’homme M., Control of the Boundary Heat Flux during the Heating Process of a Solid Material, Int. Commun. Heat Mass Transfer., 32(6): 728-738 (2005).
[10] Chen S.G., Weng  C.I., Lin J., Inverse Estimation of Transient Temperature Distribution in the End Quenching Test, J. Mater. Process. Technol., 86(3): 257-263 (1999).
[11] Plotkowski A., Krane M.M., The Use of Inverse Heat Conduction Models for Estimation of Transient Surface Heat Flux in Electroslag Remelting, J. Heat Transfer., 137(3): 031301 (2015).
[13] Khaniki H.B., Karimian S.M.H., Determining the Heat Flux Absorbed by Satellite Surfaces with Temperature Data, Journal of Mechanical Science and Technology., 28: 2393-2398 (2014).
[14] Beck J., Blackwell B., Clair C. St., "Inverse Heat Conduction", Wiley, New York, (1985).
[16] Mohammadiun M., Rahimi A.B., Khazaee I., Estimation of the Time-Dependent Heat Flux Using Temperature Distribution at a Point by Conjugate Gradient Method, Int. J. Thermal Sci., 50(11): 2443-2450 (2011).
[17] Tai B.L., Stephenson D.A., Shih A.J., An Inverse Heat Transfer Method for Determining Work Piece Temperature in Minimum Quantity Lubrication Deep Hole Drilling, J. Manuf. Sci. Eng., 134(2): 021006 (2012).
[19] Mohammadiun H., Molavi H., TaleshBahrami H.R., Mohammadiun M., Real-Time Evaluation of Severe Heat Load Over Moving Interface of Decomposing Composites, J. Heat Transfer., 134(11): 111202 (2012).
[20] Mohammadiun M., Molavi H., TaleshBahrami H.R., Mohammadiun H., Application of Sequential Function Specification Method in Heat Flux Monitoring of Receding Solid Surfaces, Heat Transfer Eng., 35 (10): 933–941(2014).
[21] WuT.S., Lee H.L., Chang W.J., Yang Y.C., An Inverse Hyperbolic Heat Conduction Problem in Estimating Pulse Heat Flux with a Dual-Phase-Lag Model, Int. Commun. Heat Mass Transfer., 60: 1-8 (2015).
[22] Cuadrado D. G., Marconnet A., Paniagua G., Non-Linear Non-Iterative Transient Inverse Conjugate Heat Transfer Method Applied to Microelectronics, Int. J. Heat Mass Trans., 152: 119503 (2020).
[23] Trofimov A., Abaimov S., Sevostianov I., Inverse Homogenization Problem: Evaluation of Elastic and Electrical (Thermal) Properties of Composite Constituents, Int. J. Eng. Sci.,129: 34–46(2018).
[24] Mohseni K., Shidfar A., Some Inverse Problems with Explicit Solutions, Int. J. Eng. Sci., 30(3): 393–395(1992).
[25] CapatinaA., StavreR., Algorithms and Convergence Results for an Inverse Problem Inheat Propagation, Int. J. Eng. Sci. 38 (5): 575–587(2000).
[26] YanovskyY. G., BasistovY. A., Linear Inverse Problems in Viscoelastic Continua and Minimax Method for Fredholm Equations of the First Kind, Int. J. Eng. Sci., 34 (11): 1221–1245(1996).
[27] Hiemenz K., Die Grenzchicht an Einem in den Gleichformingen Flussigkeitsstrom Eingetauchten Geraden Kreiszylinder, Dingler,sPolytechn. Journal, 326: 391-393 (1911).
[28] Wang C., Axisymmetric Stagnation Flow on a Cylinder, Q. Appl. Math., 32(2): 207-213 (1974).[29] Gorla R.S.R., Nonsimilar Axisymmetric Stagnation Flow on a Moving Cylinder, Int. J. Eng. Sci., 16(6): 397-400 (1978).
[31] Gorla R.S.R., Heat Transfer in Axisymmetric Stagnation Flow on a Cylinder, Appl. Sci. Res., 32(5): 541-553 (1976).
[32] Gorla R.S.R., Unsteady Viscous Flow in the vicinity of an Axisymmetric Stagnation-Point on a Cylinder, Int. J. Eng. Sci., 17(1): 87-93 (1979).
[33] Cunning G.M., Davis A.M.J., Weidman P.D., Radial Stagnation Flow on a Rotating Cylinder with Uniform Transpiration, J. Eng. Math., 33(2): 113-128 (1998).
[34] Takhar H.S., Chamkha A.J., Nath G., Unsteady Axisymmetric Stagnation-Point Flow of a Viscous Fluid on a Cylinder, Int. J. Eng. Sci., 37(15): 1943-1957 (1999).
[38] Mohammadiun H., Rahimi A.B., Stagnation-Point Flow and Heat Transfer of a Viscous, Compressible Fluid on a Cylinder, J. Thermophys. Heat Transfer, 26(3): 494-502 (2012).
[39] Mohammadiun H., Rahimi A.B., Kianifar A., Axisymmetric Stagnation-Point Flow and Heat Transfer of a Viscous Compressible Fluid on a Cylinder with Constant Heat Flux, Sci. Iran., Trans. B, 20(1): 185–194 (2013).
[40] Rahimi A.B., Mohammadiun H., Mohammadiun M., Axisymmetric Stagnation Flow and Heat Transfer of a Compressible Fluid Impinging on a Cylinder Moving Axially, J. Heat Transfer, 138(2): 022201-1-022201-9 (2016).
[41] Rahimi A.B., Mohammadiun H., Mohammadiun M., Self-Similar Solution of Radial Stagnation Point Flow and Heat Transfer of a Viscous, Compressible Fluid Impinging on a Rotating Cylinder, Iran. J. Sci. Technol. Trans. Mech. Eng., 43(1): S141-S153 (2019).
[42] Mohammadiun H., Amerian V., Mohammadiun M., Rahimi A.B.,Similarity Solution of Axisymmetric Stagnation-Point Flow and Heat Transfer of a Nanofluid on a Stationary Cylinder with Constant Wall Temperature, Iran. J. Sci. Technol. Trans. Mech Eng, 41(1): 91-91 (2017).
[43] Mohammadiun H., Amerian V., Mohammadiun M., Khazaee I., Darabi M., Zahedi M.,Axisymmetric Stagnation-Point Flow and Heat Transfer of Nano-Fluid Impinging on a Cylinder with Constant Wall Heat Flux, Thermal Science., 23 (5): 3153-3164 (2019).
[44] Zahmatkesh R., Mohammadiun H., Mohammadiun M., DibaeiBonab M.H., Investigation of Entropy Generation in Nanofluid’s Axisymmetric Stagnation Flow over a Cylinder with Constant Wall Temperature and Uniform Surface Suction-Blowing, Alexandria Eng. J., 54(4): 1483-1498 (2019).
[45] Zahmatkesh R., Mohammadiun H., Mohammadiun M., Dibaei Bonab M.H., Sadi M., Theoretical Investigation of Entropy Generation in Axisymmetric Stagnation Point Flow of Nanofluid  Impinging on the Cylinder Axes with Constant Wall Heat Flux and Uniform Surface Suction-Blowing, Iran. J. Chem. Chem. Eng. I(JCCE), 40(6): 1893-1908 (2021).
[46] Hong L., Wang C.Y., Annular Axisymmetric Stagnation Flow on a Moving Cylinder, Int. J. Eng. Sci., 47(1):  141–152 (2009).
[47] Wang C.Y., Off-Centered Stagnation Flow Towards a Rotating Disc, Int. J. Eng. Sci., 46 (4): 391–396 (2008).
[48] Song D., Hatami M., Wang Y., Jing D., Yang Y., Prediction of Hydrodynamic and Optical Properties of TiO2/Water Suspension Considering Particle Size Distribution, Int. J. Heat Mass Trans., 92: 864–876 (2016).
[49] Hatami M., Song D., Jing D., Optimization of a Circular-Wavy Cavity Filled by Nanofluid under the Natural Convection Heat Transfer Condition, Int. J. Heat Mass Trans., 98: 758–767(2016).
[50] Hatami M., Safari H., Effect of Inside Heated Cylinder on the Natural Convection Heat Transfer of Nanofluids in a Wavy-Wall Enclosure, Int. J. Heat Mass Trans.,103: 1053–1057(2016).
[53] Ghasemi S.E., Vatani M., Hatami M., Gangi D.D., Analytical and Numerical Investigation of Nanoparticle Effect on Peristaltic Fluid flow in Drug Delivery Systems, J. Mol. Liq., 215: 88–97(2016).
[56] Ali K., Ahmad S., Baluch O., Jamshed W., Eid M.R., Pasha A.A., Numerical Study of Magnetic Field Interaction with Fully Developed Flow in a Vertical Duct, Alexandria Eng. J., 61(12): 11351–11363(2022).
[57] Hatami M., Ganji D.D., Motion of a spherical particle in a fluid forced vortex by DQM and DTM, Particuology., 16: 206–212 (2014).
[58] Pourmehran O., Gorji M.R., Hatami M., Sahebi S.A.R., Domairry G., Numerical Optimization of Microchannel Heat Sink (MCHS) Performance Cooled by KKL Based Nanofluids in Saturated Porous Medium, J. Taiwan Inst. Chem. Eng., 55: 49–68 (2015).
[59] Ahmad S., Akhter S., Shahid M. I., Ali K., Akhtar M., Ashraf M., Novel Thermal Aspects of Hybrid Nanofluid Flow Comprising of Manganese Zinc Ferrite MnZnFe2O4, Nickel Zinc Ferrite NiZnFe2O4 and Motile Microorganisms, Ain Shams Engineering Journal., 13 (5): 101668 (2022).
[60] Ahmad S., Younis J., Ali K., Rizwan M., Ashraf M., Abd el Salam M A., Impact of Swimming Gyrotactic Microorganisms and Viscous Dissipation on Nanoparticles Flow through a Permeable Medium: A Numerical Assessment, J. Nanomater., 2022:.
[61] Ahmad S., Ali K., Haider T., Jamshed W.,Tag El Din E.S.M., Hussain S.M., Thermal Characteristics of Kerosene Oil-Based Hybrid Nanofluids (Ag-MnZnFe2O4): A Comprehensive Study, Frontiers in Energy Research., 10: (2022).
[62] Ali K., Ahmad A., Ahmad S., Ahmad S., Jamshed W., A Numerical Approach for Analyzing the Electromagnetohydrodynamic Flow Through a Rotating Microchannel, Arabian J. Sci. Eng., (2022).
[63] Ali K., Ahmad S., Ahmad S., Jamshed W.,  Hussain S. M., Tag El Din E.S.M., Molecular Interaction and Magnetic Dipole Effects on Fully Developed Nanofluid Flowing via a Vertical Duct Applying Finite Volume Methodology, Symmetry,  (2022).
[64]Aghayari R., Maddah H., Arani J.B., Mohammadiun H., Nikpanje E., An Experimental Investigation of Heat Transfer of Fe2O3/Water Nanofluid in a Double Pipe Heat Exchanger, Int. J. Nano Dimens. 6(5): 517-524(2015).
[65]Aghayari R., Maddah H.,Faramarzi A.R., Mohammadiun H., Mohammadiun M., Comparison of the Experimental and Predicted Data for Thermal Conductivity of Iron Oxide Nanofluid Using Artificial Neural Networks, Nanomed. Res. J., 1(1): 15-22 (2016).
[66] Habibi M.R., Amini M., Arefmanesh A., Ghasemikafrudi E., Effects of Viscosity Variations on Buoyancy-Driven Flow from a Horizontal Circular Cylinder Immersed in Al2O3-Water Nanofluid, Iran. J. Chem. Chem. Eng., (IJCCE), 38 (1): 213-232 (2019).
[67] Nematollahzadeh  A., Jangara H., Exact Analytical and Numerical Solutions for Convective Heat     Transfer in a Semi-Spherical Extended Surface with Regular Singular Points, Iran. J. Chem. Chem. Eng. (IJCCE), 40 (3): 980-989 (2021).
[68] Ozicik M.N., Orlande H.R.B., “Inverse Heat Transfer Fundamentals and Application”, Taylor & Francis, New York, (2000).
[69] Azimi A., “Thermo-Hydraulically Simulation of Thermal Systems Using Inverse Evaluation”, Ph.D. Thesis, Sharif University of Technology, Tehran, Iran. (2007). [In Persian]
[70] Beck J.V., Arnold K.J., “Parameter Estimation in Engineering and Science”, John Wiley & Sons Inc., New York, (1977).
[71] Montazeri M., Mohammadiun H., Mohammadiun M., Dibaee Bonab M.H., Inverse Estimation of Time-Dependent Heat flux in Stagnation Region of Annular Jet on a Cylinder Using Levenberg-Marquardt Method, Iran. J. Chem. Chem. Eng. (IJCCE), 41 (3): (2022).