Green Synthesis and Characterization of Magnetite Nanoparticles (Fe3O4 NPs) Using Qazwan Seeds Extract as an Antimicrobial Agent

Document Type : Research Article

Author

Department of Chemistry, Faculty of Science, Soran University, Soran, Kurdistan Regional Government (KRG), IRAQ

Abstract

This study reports the green synthesis and eco-friendly preparation of the magnetite nanoparticles (Fe3O4 NPs) using an aqueous extract of Qazwan (Pistacia atlantica) seeds as natural stabilizers and capping agents. The green Fe3O4 NPs were characterized with different characterization techniques such as Ultraviolet-Visible (UV-vis) Spectrometry, Energy Dispersive X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM) Equipped with Energy Dispersive Spectroscopy (EDX), and Fourier Transform InfraRed (FT-IR) spectrophotometry. The UV-Vis spectrum and FT-IR were used to identify the biomolecules in the Qazwan seeds extract for green synthesized Fe3O4 NPs. The XRD, TEM, and SEM demonstrated the generation of  Fe3O4 NPs with an average diameter of 14-15 nm. The Williamson-Hall and the Scherrer equation obtained the crystalline size for Fe3O4 NPs, respectively, 6.43 and 14.22 nm which confirmed the effects of both crystallite size and strain. Additionally, the antibacterial and antifungal activity of synthesized Fe3O4 NPs was tested, which revealed that NPs had moderate antimicrobial activity against gram-positive bacteria (Enterococcus faecalis), gram-negative bacteria (E. coli, Pseudomonas aeruginosa, Acinetobacter baumanni, and Klebsiella pneumonia) and Candida albicans pathogenic fungal strains at different concentrations of Fe3O4 NPs (1.0 to 20 mg/mL) with average inhabitation zone of (8 to 22 mm).

Keywords

Main Subjects


[1] Aziz T., Farid A., Haq F., Kiran M., Ullah A., Zhang K., Li C., Ghazanfar S., Sun H., Ullah R., Ali A., Muzammal M., Shah M., Akhtar N., Selim S., Hagagy N., Samy M., Al Jaouni S.K., A Review on the Modification of Cellulose and Its Applications, Polymers, 14(15): 3206-3215 (2022).
[2] Alharbi H., Luqman M., Khalil K., Elnakady Y.A., Abd-Elkader O., Rady A., Alharthi N., Karim M., Fabrication of Core-Shell Structured Nanofibers of Poly (Lactic Acid) and Poly (Vinyl Alcohol) by Coaxial Electrospinning for Tissue Engineering, European Polym. J., 98: 483-491 (2018).
[3] Alghoraibi I., Alomari S., “Different Methods for Nanofiber Design and Fabrication", Springer, (2018).
[4] Wang Q., Zhu L., Polymer Nanocomposites for Electrical Energy Storage, J. Polym. Sci. Part B: Polym. Phys., 49(20): 1421-1429 (2011).
[5] Kulkarni R.K., Pani K.C., Neuman C., Leonard F., Polylactic Acid for Surgical Implants, Arch. Surg., 93(5): 839-843 (1966).
[6] Aziz T., Ullah A., Ali A., Shabeer M., Shah M.N., Haq F., Iqbal M., Ullah R., Khan F.U., Manufactures of Bio‐Degradable and Bio‐Based Polymers for Bio‐Materials in the Pharmaceutical Field, J. Appl. Polym. Sci., 139(29): 52624-52634 (2022).
[7] Janik H., Marzec M., A Review: Fabrication of Porous Polyurethane Scaffolds, Mater. Sci. Eng: C., 48: 586–591 (2015).
[9] Sun B., Duan B., Yuan X., Preparation of Core/Shell PVP/PLA Ultrafine Fibers by Coaxial Electrospinning, J. Appl. Polym. Sci., 102(1): 39–45 (2006).
[10] Unnithan A.R., Sasikala A.R.K., Murugesan P., Gurusamy M., Wu D., Park C.H., Kim C.S Electrospun polyurethane-Dextran Nanofiber Mats Loaded with Estradiol for Post-Menopausal Wound Dressing, Int. J. Biol. Macromol. 77: 1-8 (2015).
[11] Dehcheshmeh M.A., Fathi M., Production of Core-Shell Nanofibers from Zein and Tragacanth for Encapsulation of Saffron Extract, Int. J. Biol. Macromol., 122: 272–279 (2018).
[12] Alippilakkottea S., Kumar S., Sreejith L., Fabrication of PLA/Ag Nanofibers by Green Synthesis Method Using Momordica Charantia Fruit Extract for Wound Dressing Applications, Collo. Surf. A: Phys. Eng. Asp., 529: 771-782 (2017).
[13] Lakshman L.R., Shalumon K., Nair S.V., Jayakumar R., Preparation of Silver Nanoparticles Incorporated Electrospun Polyurethane Nano-Fibrous Mat for Wound Dressing, J. Macromol. Sci. Part A: Pure Appl. Chem., 47(10): 1012–1018 (2010).
[14] Nguyen T.T.T., Chung O.H., Park J.S., Coaxial Electrospun Poly(Lactic Acid)/Chitosan (Core/Shell) Composite Nanofibers and their Antibacterial Activity, Carbohydr. Polym., 86(4): 1799–1806 (2011).
[16] Zeytuncu B., Morcali M.H., Fabrication and Characterization of Antibacterial Polyurethane Acrylate-Based Materials, Mat. Res., 18(4): 867-872 (2015).
[17] Hsu S., Tseng H.J, Lin Y.C., The Biocompatibility and Antibacterial Properties of Waterborne Polyurethane-Silver Nanocomposites, Biomaterials., 31(26): 6796-6808 (2010).
[18] Lan X., Liu Y., Wang Y., Tian F., Miao X., Wang H., Tang  Y., Coaxial Electrospun PVA/PCL Nanofibers with Dual Release of Tea Polyphenols and ε-POLY (L-Lysine) as Antioxidant and Antibacterial Wound Dressing Materials, Inter. J. Pharm., 601: 120525-120535 (2021).
[20] Wu J.Y., Ooi C.W., Song C.P., Wang C.Y., Liu B.L., Lin G.Y, Chiu C.Y., Chang Y.K., Antibacterial Efficacy of Quaternized Chitosan/Poly (Vinyl Alcohol) Nanofiber Membrane Crosslinked with Blocked Diisocyanate, Carbohydr. Polym., 262: 117910-117921 (2021).
[21] Ramakrishna S., Fujihara K., Teo W.E., Yong T., Ma Z., Ramaseshan R., Electrospun Nanofibers: Solving Global Issues, Mater. Today., 9(3): 40-50 (2006).
[22] Khwanmuang P., Naparswad C., Archakunakorn S., Waicharoen C., Chitichotpanya C., Optimization of in Situ Synthesis of Ag/PU Nanocomposites Using Response Surface Methodology for Self-Disinfecting Coatings, Prog. Org. Coat., 110: 104-113 (2017).
[23] Fukushima J., Yasuda K., Teratani H., Nishizaki S., Settling Behavior of Fillers in Thermosetting Epoxy Casting Resins During Cure, J. Appl. Polym. Sci., 22(6): 1701-1714 (1978).
[24] Jia W., Tchoudakov R., Joseph R., Narkis M., Siegmann A., The Conductivity Behavior of Multi‐Component Epoxy, Metal Particle, Carbon Black, Carbon Fibril Composites, J. Appl. Polym. Sci., 85(8): 1706-1713 (2002).
[26] Sayyar M., Soroushian P., Abdol N., Staggemeier K., Bakker M.G., Balachandra A.M., High Performance Pseudoelastic Metal Nanowire Reinforced Elastomeric Composite, Ind. Eng. Chem. Res., 53(34): 13329-13339 (2014).
[27] Pradhan K.C., Nayak P.L., Synthesis and Characterization of Polyurethane Nanocomposite from Castor Oil- Hexamethylene Diisocyanate (HMDI), Adv. Appl. Sci. Res., 3(5): 3045-3052 (2012).
[28] Feng F., Ye L., Morphologies and Mechanical Properties of Polylactide/Thermoplastic Polyurethane Elastomer Blends, J. Appl. Polym. Sci., 119(5): 2778-2783 (2010).
[29] Erbil H.Y., Demirel A.L., Avci Y., Mert O., Erbil H.Y., Demirel A.L., Avci Y., Mert O., Transformation of a Simple Plastic into a Superhydrophobic Surface, Science, 299(5611): 1377-1380 (2003).
[30] Krishna K., Harisha K.S., Neelakandan R., Fabrication and Conductivity Study of Silver Nanoparticles Loaded Polyvinyl Alcohol (PVA-AgNPs) Nanofibers, Mater. Today: Proceed., 42(2): 515-520 (2021).
[31] Chernousova S., Epple M., Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal, Chem. Int. Ed., 52(6): 1636–1653 (2013).
[32] Sun Z., Fan C., Tang X.,  Zhao J., Song Y., Shao Z., Xu L., Characterization and Antibacterial Properties of Porous Fibers Containing Silver Ions, Appl. Surf. Sci., 387: 828-838 (2016).
[33] Li R., Cheng Z., Yu X., Wang S., Han Z., Kang L., Preparation of Antibacterial PCL/PVP-AgNP Janus Nanofibers by Uniaxial Electrospinning, Mater. Lett., 254: 206-209 (2019).
[34] Momeni M., Asadi, S., Shanbedi M., Antimicrobial Effect of Silver Nanoparticles Synthesized with Bougainvillea Glabra Extract on Staphylococcus Aureus and Escherichia Coli, Iran. J. Chem. Chem. Eng. (IJCCE), 40(2): 395-405 (2021).
[35] Ghorbani M., Ehsani Amoli A., Soleimani Lashkenari M., Polypyrrole/Silver Nanocomposite: Synthesis, Characterization and Antibacterial Activity, Iran. J. Chem. Chem. Eng. (IJCCE), 38(3): 1-7 (2019).
[36] Zhang S., Ye J., Sun Y., Kang J., Liu J., Wang Y., Li Y., Zhang L., Ning G., Electrospun Fibrous Mat Based on Silver (I) Metal-Organic Frameworks-Polylactic Acid for Bacterial Killing and Antibiotic-Free Wound Dressing, Chem. Eng. J., 390: 124523-124533, (2020).
[37] Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N., Kim J.O., A Mechanistic Study of the Antibacterial Effect of Silver İons on Escherichia Coli and Staphylococcus Aureus, J. Biom. Mater. Res., 52(4): 662-668 (2020).
[38] Movahedi M., Asefnejad A., Rafienia M., Khorasani M.T., Potential of Novel Electrospun Core-Shell Structured Polyurethane/Starch (Hyaluronic Acid) Nanofibers for Skin Tissue Engineering: In Vitro and in Vivo Evaluation, Int. J. Biol. Macromol., 146: 627-637 (2020).