Two Different Strategies for Palladium Reduction on Spinel ZnMn2O4 Micro-Sponge: Application in the Electrochemical Oxidation of Formaldehyde

Document Type : Research Article


1 Department of Chemistry, Faculty of Basic Sciences, University of Sistan and Baluchestan, Zahedan, I.R. IRAN

2 Renewable Energies Research Institute, University of Sistan and Baluchestan, Zahedan, I.R. IRAN

3 Department of Materials Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, I.R. IRAN


The formaldehyde, HCHO, is generated via the partial oxidation of methanol, and the investigation of its electrochemical oxidation is essential for the complete knowledge of methanol oxidation. Ceramic material with a spongy structure can promote the dispersion of noble metals as the main catalyst for the electrooxidation of organic molecules. In this research, spinel ZnMn2O4 (ZMO) micro-sponge was synthesized, characterized, and utilized as a booster for the Pd catalyst. Palladium was stabilized on ZMO with two different strategies, containing reduction with sodium borohydride and zinc plate. The samples were assessed using X-ray diffraction, scanning electron microscopy, transition electron microscopy, and electrochemistry. In comparison with non-promoted Pd, Pd/ZMO electrocatalyst was shown excellent efficiency in parameters like electrochemical active surface area and turnover parameters. The outcomes represented that the palladium nanoparticles are reduced with the chemical system having a lesser diameter and better dispersion than the electrochemical one. Consequently, as we expected, the electrochemical oxidation of formaldehyde showed better results for the reduction
by the chemical in comparison with electrochemical reduction systems.


Main Subjects

[1] Trafela Š., Zavašnik J., Šturm S., Rožman K.Z., Formation of a Ni(OH)2/NiOOH Active Redox Couple on Nickel Nanowires for Formaldehyde Detection in Alkaline Media, Electrochimica Acta, 30(444): 346-353 (2019).
[2] Yi Q., Niu F., Yu W., Pd-Modified TiO2 Electrode for Electrochemical Oxidation of Hydrazine, Formaldehyde and Glucose, Thin Solid Films, 519(10): 3155-3161(2011).
[4] Ji J., Lu X., Chen Ch., He M., Huang H., Potassium-Modulatedδ-MnO2 as Robust Catalysts for Formaldehyde Oxidation at Room Temperature, Applied Catalysis B: Environmental, 260(1): 118210-18222 (2020).
[5] O'Sullivan E.J.M, White J.R., Electro-Oxidation of Formaldehyde on Thermally Prepared ruo2 and Other Noble Metal Oxides, Journal of the Electrochemical Society, 136(9): 2576-2583 (1989).
[6] Geng J., Bi Y., Lu G., Morphology-Dependent Activity of Silver Nanostructures Towards the Electro-Oxidation of Formaldehyde, Electrochemistry Communications, 11(6): 1255–1258 (2009).
[7] Abrishamkar M., Barootkoob M., Electrooxidation of Formaldehyde as a Fuel for Fuel Cells Using Fe2+-Nano-Zeolite Modified Carbon Paste Electrode, International Journal of Hydrogen Energy, 42(37): 23821-23825 (2017).
[8] Dong Q., Li Y., Zhu L., Ma T., Guo C., Electrocatalytic Oxidation of Methanol and Formaldehyde on Platinum-Modified Poly(o-Methoxyaniline)-Multiwalled Carbon Nanotube Composites, International Journal of electrochemical science, 8(7): 8191-8200 (2013).
[9] Luo K., Wang H., Li X., Electrocatalytic Activity of Ligand-Protected Gold Particles: Formaldehyde Oxidation, Gold Bulletin, 47(1): 41-46 (2014).
[10] Biuck H., Serveh G.h., Electrooxidation of Formic Acid and Formaldehyde on the Fe3O4@Pt Core-Shell Nanoparticles/Carbon-Ceramic Electrode, Iranian Journal of Chemistry and Chemical Engineering, 35(4): 99-112 (2016).
[11] Gao G., Guo D., Li H., Electrocatalytic Oxidation of Formaldehyde on Palladium Nanoparticles Supported on Multi-Walled Carbon Nanotubes, Journal of Power Sources, 162(2): 1094-1098 (2006).
[12] Safavi A., Maleki N., Farjami F., Farjami E., Electrocatalytic Oxidation of Formaldehyde on Palladium Nanoparticles Electrodeposited on Carbon Ionic Liquid Composite Electrode, Journal of Electroanalytical Chemistry, 626(1-2): 75–79 (2009).
[13] Vaskelis A., Tarozaite R., Jagminiene A., Tamasauskaite Tamasiunaite L., Juskenas R., Kurtinaitiene M., Gold Nanoparticles Obtained by Au(III) Reduction with Sn(II): Preparation and Electrocatalytic properties in Oxidation of Reducing Agents, Electrochimica Acta, 53(2): 407–416 (2007).
[16] Jahan-Bakhsh R., Ojani R., Abdi S., Hosseini S. R., Highly Improved Electrooxidation of Formaldehyde on Nickel/poly (O-Toluidine)/Triton X-100 Film Modified Carbon Nanotube Paste Electrode, International Journal of Hydrogen Energy, 37(3): 2137-2146 (2012). 
[17] Ojani R., Jahan-Bakhsh R., Ahmady-Khanghah Y., Safshekan S., Copper-poly (2-Aminodiphenylamine) Composite as Catalyst for Electrocatalytic Oxidation of Formaldehyde in Alkaline Media, International Journal of Hydrogen Energy, 38(13): 5457-463 (2013).
[18] Behbahani E. S., Eshghi A., Ghaedi M., Bimetallic PtPd Nanoparticles Relying on CoNiO2 and Reduced Graphene Oxide as a Most Operative Electrocatalyst Toward Ethanol Fuel Oxidation, International Journal of Hydrogen Energy, 4(49): 24977-24990 (2021).
[19] Siwal S., Matseke S., Mpelane S., Hooda N., Nandi D., Mallick K., Palladium-Polymer Nanocomposite: An Anode Catalyst for the Electrochemical Oxidation of Methanol, International Journal of Hydrogen Energy, 42(37): 23599-23605 (2017).
[20] Altuner E.E., Ozalp V.C., Yilmaz M.D., Sudagidan M., Aygun A., Acar E.E., Tasbasi B. B., Sen F., Development of Electrochemical Aptasensors Detecting Phosphate Ions on TMB Substrate with Epoxy-Based Mesoporous Silica Nanoparticles, Chemosphere, 297(1): 134077 (2022).
[21] Selvaraj V., Nirmala Grace A., Alagar M., Electrocatalytic Oxidation of Formic Acid and Formaldehyde on Nanoparticle Decorated Single Walled Carbon Nanotubes, Journal of Colloid and Interface Science, 333(1): 254–262 (2009).
[22] Yavari Z., Noroozifar M., Mirghoreishi Roodbaneh, M., Ajorlou, B., SrFeO3-δ Assisting with Pd Nanoparticles on the Performance of Alcohols Catalytic Oxidation, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(6): 21-37 (2017).
[23] Fedoseev I.V., Shevelkov A.V., Vasekin V.V., Poyarkov K.B., Rovinskaya N.V., Formation and Destruction of Palladium Carbonyl Nanoclusters in the Pd(II)–Cl––H+–H2O–CO Systems, Russian Journal of Inorganic Chemistry, 65(1):161–168 (2020).
[24] Klein M., Nadolna J., Gołąbiewska A., Mazierski P., Klimczuk T., Remita H., Zaleska-Medynskam A., The Effect of Metal Cluster Deposition Route on Structure and Photocatalytic Activity of Mono- and Bimetallic Nanoparticles Supported on TiO2 by Radiolytic Method, Applied Surface Science, 378: 37-48 (2016).
[25] Sunagawa Y., Yamamoto K., Takahashi H., Muramatsu A., Liquid-Phase Reductive Deposition as a Novel Nanoparticle Synthesis Method and its Application to Supported Noble Metal Catalyst Preparation, Catalysis Today, 132(1-4): 81–87 (2008).
[26] Altuner E.E., Gur T., 10 - Ternary/quaternary Nanomaterials for Direct Alcohol Fuel Cells, Nanomaterials for Direct Alcohol Fuel Cells: Characterization, Design, and Electrocatalysis, F. Şen (Ed.) Micro and Nano Technologies, Elsevier, 157-172 (2021).
[27] Eshghi A., Kheirmand M., Electroplating of Pt–Ni–Cu Nanoparticles on Glassy Carbon Electrode for Glucose Electro-Oxidation Process, Surface Engineering, 35(2):128-134 (2019).
[28] Kuppan B., Selvam P., Platinum-Supported Mesoporous Carbon (Pt/CMK-3) as Anodic Catalyst for Direct Methanol Fuel Cell Applications: The Effect of Preparation and Deposition Methods, Progress in Natural Science: Materials International, 22(6): 616-623 (2012).
[29] Gomroki S., Yavari Z., Abbasian A.R., Shafiee Afarani M., Noroozifar M., Stabilizing Nano-Pd on Porous Li2TiO3 Via Chemical and Electrochemical Reduction Systems for the Electrooxidation of Ethylene Glycol, Materials Chemistry and Physics, 281(1): 125896-125905 (2022).
[30] Xie X., Li Y., Liu Zh. Q., Haruta M., Shen W., Low-Temperature Oxidation of CO Catalysed by Co3O4 Nanorods, Nature, 458(7239): 746-749 (2009).
[31] Hu L., Peng Q., Li Y., Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion, Journal of the American Chemical Society, 130(48): 16136-16137 (2008).
[32] Zhang K., Yang W., Ma Ch., Wang Y., Sun Ch., Chen Y., Duchesne P., Zhou J., Wang J., Hu Y., Banis M.N., Zhang P., Li F., Li J., Chen L., A Highly Active, Stable and Synergistic Pt Nanoparticles/Mo2C Nanotube Catalyst for Methanol Electro-Oxidation, NPG Asia Materials, 7(1): 153-163 (2015).
[33] Barakat N.A.M., Abdelkareem M.A., El-Newehy M., Kim H.Y., Influence of the Nanofibrous Morphology on the Catalytic Activity of NiO Nanostructures: an Effective Impact Toward Methanol Electrooxidation, Nanoscale Research Letters, 8(1): 1-6 (2013)
[34] Kua J., A. Goddard W., Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru):  Application to Direct Methanol Fuel Cells, Journal of the American Chemical Society, 121(47): 10928–10941(1999).
[35] Li Y., Tang L., Deng D., Ye J., Wu Zh., Wang J., Luo L., A Novel Non-Enzymatic H2O2 Sensor Using Znmn2o4 Microspheres Modified Glassy Carbon Electrode, Colloids and Surfaces B: Biointerfaces, 179(1): 293–298 (2019).
[36] Luo X., Zhang X., Chen L., Li L., Zhu G., Chen G., Yan D., Xu H., Yu A., Mesoporous ZnMn2O4 Microtubules Derived from a Biomorphic Strategy for High Performance Lithium/Sodium Ion Batteries, ACS Applied Materials & Interfaces, 10(39): 33170–33178 (2018).
[37] Courtel F.M., Abu-Lebdeh Y., Davidson I.J., ZnMn2O4 Nanoparticles Synthesized by a Hydrothermal Method as an Anode Material for Li-Ion Batteries, Electrochimica Acta, 71: 123–127 (2012).
[38] Lobo L.S., Kumar A.R., Investigation of Structural and Electrical Properties of ZnMn2O4 Synthesized by Sol–Gel Method, Journal of Materials Science: Materials in Electronic, 27(1): 7398–7406 (2016).
[39] Bessekhouad Y., Trari M., Photocatalytic Hydrogen Production from Suspension of Spinel Powders AMn2O4 (A=Cu and Zn), International Journal of Hydrogen Energy, 27(4): 357–362 (2002).
[40] Zhao L., Li X., Zhao J., Fabrication, Characterization and Photocatalytic Activity of Cubic-Like ZnMn2O4, Applied Surface Science, 268: 274–277 (2013).
[41] Courtel F.M., Duncan H., Abu-Lebdeh Y., Davidson I.J., High Capacity Anode Materials for Li-Ion Batteries Based on Spinel Metal Oxides AMn2O4 (A = Co, Ni, and Zn), Journal of Materials Chemistry, 21(27):10206-10218 (2011).
[42] Yang Y., Zhao Y., Xiao L., Zhang L., Nanocrystalline ZnMn2O4 as A Novel Lithium-Storage Material, Electrochemistry communications, 10(8): 1117–1120 (2008).
[43] Gupta M., Gupta M., Anu, Mudsainiyan R.K., Randhawa B.S., Physico-Chemical Analysis of Pure and Zn Doped Cd Ferrites (Cd1-xZnxFe2O4) Nanofabricated by Pechini Sol–Gel Method, Journal of Analytical and Applied Pyrolysis, 116: 75–85 (2015).
[44] Gharibshahian M., Nourbakhsh M.S., Mirzaee O., Evaluation of the Superparamagnetic and Biological Properties of Microwave Assisted Synthesized Zn & Cd Doped CoFe2O4 Nanoparticles via Pechini Sol–Gel Method, Journal of Sol-Gel Science and Technology, 85: 684-692 (2018).
[45] Vlazan P., Stoia M., Structural and Magnetic Properties of CoFe2O4 Nanopowders, Prepared Using a Modified Pechini Method, Ceramics International, 44(1): 530–536 (2018).
[46] Motavallian P., Abasht B., Abdollah-Pour H., Zr Doping Dependence of Structural and Magnetic Properties of Cobalt Ferrite Synthesized by Sol–Gel Based Pechini Method, Journal of Magnetism and Magnetic Materials, 451: 577–586 (2018).
[47] Tan Q., Zhu H., Guo Sh., Chen Y., Jiang T., Shu Ch., Chong Sh., Hultman B., Liu Y., Wu G., Quasi-Zero-Dimensional Cobalt Doped CeO2 Dots on Pd Catalysts for Alcohol Electro-Oxidation with Enhanced Poisoning-Tolerance, Nanoscale, 9(34): 12565-72 (2017).
[48] E. Altuner E., Ozalp V. C., Yilmaz M D, Bekmezci M., Sen F., High-Efficiency Application of CTS-Co NPs Mimicking Peroxidase Enzyme on TMB(ox), Chemosphere, 292: 133429 (2022).
[49] Abbasian A.R., Shafiee Afarani M., One-Step Solution Combustion Synthesis and Characterization of ZnFe2O4 and ZnFe1.6O4 Nanoparticles, Applied Physics A, 125 (721): 1-12 (2019).
[50] Abbasian A.R., Rahmani M., Salt-Assisted Solution Combustion Synthesis of Nanostructured ZnFe2O4-ZnS Powders, Inorganic Chemistry Communications, 111: 107629-51 (2020).
[51] Eshghi A., Sabzehmeidani M.M., Platinum–Iron Nanoparticles Supported on Reduced Graphene Oxide as an Improved Catalyst for Methanol Electro Oxidation, International Journal of Hydrogen Energy, 43(12): 6107-6116 (2018).
[52] Yavari Z., Noroozifar M., Parvizi T., Performance Evaluation of Anodic Nano-Catalyst for Direct Methanol Alkaline Fuel Cell, Environmental Progress & Sustainable Energy, 37(1): 597-604 (2018).
[53] Habibi B., Aluminum Supported Palladium Nanoparticles: Preparation, Characterization and Application for Formic Acid Electrooxidation, International Journal of Hydrogen Energy, 38(13): 5464–5473 (2013).
[55] Kaedi F., Yavari Z., Noroozifar M., Saravani H., Promoted Electrocatalytic Ability of the Pd on Doped Pt in NiOMgO Solid Solution Toward Methanol and Ethanol Oxidation, Journal of Electroanalytical Chemistry, 827: 204-212 (2018).
[56] Qiu X., Zhang H., Wu P., Zhang F., Wei S., Sun D., Xu L., Tang Y., One‐Pot Synthesis of Freestanding Porous Palladium Nanosheets as Highly Efficient Electrocatalysts for Formic Acid Oxidation, Advanced Functional Materials, 27(1): 1603852-61 (2016).
[57] Singh R.N., Singh A., Anindita, Electrocatalytic Activity of Binary and Ternary Composite Films of Pd, MWCNT and Ni, Part II: Methanol Electrooxidation in 1 M KOH, International Journal of Hydrogen Energy, 34(1): 2052 – 2057 (2009).
[58] Kiyani R., Parnian MJ., Rowshanzamir S., Investigation of the Effect of Carbonaceous Supports on the Activity and Stability of Supported Palladium Catalysts for Methanol Electrooxidation Reaction, International Journal of Hydrogen Energy, 42(36): 2070-23084 (2017).
[59] Wang X., Tang B., Huang X., Ma Y., Zhang Zh., High Activity of Novel Nanoporous Pd–Au Catalyst for Methanol Electro-Oxidation in Alkaline Media, Journal of Alloys and Compounds, 565:120–126 (2013).
[60] Li R., Hao H., Cai W-B, Huang T., Yu A., Preparation of Carbon Supported Pd–Pb Hollow Nanospheres and their Electrocatalytic Activities for Formic Acid Oxidation, Electrochemistry Communications, 12(7): 901–904 (2010).
[61] Arjona N., Rivas S., Άlvarez-Contreras L., Guerra-Balcazar M., Ledesma-Garcı J., Kjeangd E., Arriaga L. G., Glycerol Electro-Oxidation in Alkaline Media Using Pt and Pd Catalysts Electrodeposited on Three-Dimensional Porous Carbon Electrodes, New Journal of Chemistry, 41(4): 1854-1863 (2017).
[62] Huang Y., Yin M., Zhou X., Liu Ch., Xing W., Formation of Porous Pd Black Induced by in Situ catalytic Reaction, Nanotechnology, 23(3): 035605-11 (2012).
[63] Qadir K., Joo S. H., Mun B. S., Butcher D. R., Renzas J. R., Aksoy F., Liu Zh., Somorjai G. A., Park J. Y., Intrinsic Relation Between Catalytic Activity of CO Oxidation on Ru Nanoparticles and Ru Oxides Uncovered with Ambient Pressure XPS, Nano letters, 12(11): 5761–5768 (2012).
[64] Zhang Y., Cao Y., Chen D., Cui P., Yang J., Ionic Liquid Assisted Synthesis of Palladium Nanoclusters for Highly Efficient Formaldehyde Oxidation, Electrochimica Acta, 269: 38-44 (2018).
[66] Ejaz A., Ahmed M.S., Jeon S., Synergistic Effect of 1,4-Benzenedimethaneamine Assembled Graphene Supported Palladium for Formaldehyde Oxidation Reaction in Alkaline Media, Journal of the Electrochemical Society, 163(5): B163–B168 (2016).
[67] Li Z., Lu Z.X., Li B., Bai L., Wang Q., Research on Electrochemical Oxidation of Formaldehyde on the Nanoporous Silver Electrode in Alkaline Solution, ECS Electrochemistry Letters, 4(6): H24–H27 (2015).
[68] Bansal V., Li V., Mullane A.P.O., Bhargava S.K., Shape Dependent Electrocatalytic Behavior of Silver Nanoparticles, Cryst. Eng. Comm., 12(12): 4280–4286 (2010).
[69] Li H., Zhang Y., Wan Q., Li Y., Yang N., Expanded Graphite and Carbon Nanotube Supported Palladium Nanoparticles for Electrocatalytic Oxidation of Liquid Fuels, Carbon, 131(1): 111-119 (2018).
[70] Gorle D.B., Kulandainathan M.A., One-pot Synthesis of Highly Efficient Graphene Based Three-Dimensional Hybrids as Catalyst Supporting Materials for Electro-Oxidation of Liquid Fuels, Journal of Materials Chemistry A, 5(29): 15273-15286 (2017).
[71] Cao J. L., Shao G. S., Ma T. Y., Wang Y., Ren T. Zh., Wu Sh. H., Yuan Zh. Y., Hierarchical Meso–Macroporous Titania-Supported CuO Nanocatalysts: Preparation, Characterization and Catalytic CO Oxidation, Journal of Materials Science, 44: 6717–6726 (2009).
[72] Teixeira L.S.G., Leão E.S., Dantas A. F., Pinheiro H.L.C., Costa A. C.S., Andrade J., Determination of Formaldehyde in Brazilian alcohol Fuels by Flow-Injection Solid Phase Spectrophotometry, Talanta, 64(3): 711-715 (2004).
[73] Saleh Ahammad A.J., Shaikh A.A., Jessy N.J., Tania Akter, Abdullah Al Mamun, P.K. Bakshi, Hydrogen Peroxide Biosensor based on the Immobilization of Horseradish Peroxidase onto a Gold Nanoparticles-Adsorbed Poly (Brilliant Cresyl Blue) Film, Journal of the Electrochemical Society, 162(3): B52-B56(2015).
[74] Correia A.N., Mascaro L.H., Machado S.A.S., Avaca L.A., Amorphous Palladium-Silicon Alloys for the Oxidation of Formic Acid and Formaldehyde. A Voltammetric Investigation, Journal of the Brazilian Chemical Society, 10: 478-482 (1999).
[75] Eris S., Das_delen Z., Sen F., Enhanced Electrocatalytic Activity and Stability of Monodisperse Pt Nanocomposites for Direct Methanol Fuel Cells, Journal of Colloid and Interface Science, 513(1): 767–773 (2018).