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ABSTRACT: In this computational research, the solvent effect is probed on HDAL of C20 with  

I to yield Ia compound. So, in going from the gas phase to non-polar, and in turn to the polar solvent,  

a good consistency appears between the dielectric constant of the solvent (ε) and the released 

solvation energy (∆El-g). The stability and polarity of Ia appearances are proportional to ε, and  

the probability of the H-bonding. While the obtained endo-isomer from HDAL is anticipated 

thermodynamically more stable than exo- analogue; here we found that the formation of exo-isomer  

is only the obtained product from this HDAL. Subsequently, exo-isomer is more stable than endo-

analogue; due to the disappearance of the resulting electronic effect and ring-strain effect from π-stacking 

between the aromatic rings of I and nanocage. The possibility of HDAL is ruled out by the lowest 

energy barrier of 5.1 kcal/mol probed for exo Transition State (TS) in the gas phase, while the highest 

energy barrier of 9.4 kcal/mol is investigated for endo TS in H2O. Hence, the designed HDAL  

is distinguished as an attractive and promising procedure for ligation in biochemistry due to its higher 

rate and selectivity in H2O. Fascinatingly, similar to stable C60 nanostructure, exo HDAL of unstable 

C20 nanostructure with the scrutinized diene can be carried out thermally at room temperature and  

maybe a potential candidate for efficient and selective HDAL in living systems.  
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The HDAL is a way for yielding six-membered cyclic 

organic compound with boat conformation [1]. The 

biologically active compounds of C60 have been subject of 

intense research, for their chemistry and technological 

applications in different sciences. They are significantly 

coupled with geometry, stability and electronic properties 

in aqueous media [2,3]. Also, oxindole, and thioindoles are 

significant in biological testing and activity against for 

bacteria, viruses, cancer, malaria, and another diseases 

targeting exclusive enzymes [4-8]. Gassman et al. 

developed a simple one pot reaction for synthesis of 

indoles, isatins and their derivatives (Scheme 1) [5].  

It was suggested that enamines and iminium salts are 

generally intermediates in the amine-catalyzed reactions of 

oxindoles with carbonyl compounds; and “Et3N” is used in 

this reaction as a suitable base. Several experimental and 

theoretical attempts have been made on possible reactions 

between nanostructures with various species undergoing 

HDAL, functionalization, and so forth [9-15]. Nevertheless, 

there is no report on HDAL between C20 and I (Fig. 1).  

Here, the characterization of HDAL are surveyed in the 

various solvents, using DFT—SCRF. We have chosen a 

B3LYP method in order to account for electron correlation 

effects and the large basis sets of wave functions (6-

311++G** and AUG-cc-pVTZ) which support both polar 

and diffuse functions on hydrogen  and heavy atoms. This 

seems to be a reasonable choice for the studied polar 

molecule which includes N, O, S atoms bearing lone pair 

electrons and H—bonding.  

 

COMPUTATIONAL METHODS 

Full optimizations of the scrutinized geometries are 

accomplished by GAMESS program, at the above-

mentioned method and levels [16-19]. The TSs are found 

through the QST3 (reactants-products quasi-synchronous 

transit) manner [20]. The frequency computation is applied 

to characterize structure nature as minimum and/or 

maximum energy [21]. The solvent effect is studied by 

means of SCRF [22]. The AIM (atoms in molecules), NBO 

(natural bond orbital) and MEP (molecular electrostatic 

potential) calculations are carried out, too [23].  

 

RESULTS AND DISCUSSION 

Here, force constant calculations are carried out, where 

initial structures (I & C20) as well as Ia are found as real 

minimum. Solvents with larger ε including H2O, DMSO, 

and CH3NO2 that fall into the polar class are very effective 

at stabilizing minima and TSs (Figs. 2-3).  

By changing media from gas phase to solvent phase, 

Eexo
≠ and Eendo

≠ is increased slightly. Even though the 

stabilizing effect of benzene is less than polar solvents and 

the Eexo
≠ is decreased to 8.2, 7.1, 6.8, 6.3, 6.0, 5.4, and  

5.1 kcal/mol, whereas the Eendo
≠ is still too high (9.4, 8.8, 

8.5, 8.0, 7.3, 6.9 and 5.5 kcal/mol, for H2O, DMSO, 

CH3NO2, C2H4Cl2, EtOH, C6H6, and gas phase, 

respectively). Evidently, the highest energy is related to 

endo TS in water, whereas the lowest energy is associated 

with exo TS in the gas phase (9.4 vs. 5.1 kcal/mol, 

correspondingly). The stability of solutes depends on 

solventʼs ε and the possibility of H—bonding. Accordingly, 

the formation of the endo TS is expected to be energetically 

less favorable due to the π-π stacking between diene and 

dienophile. Generally, the cyclohexene ring in this process 

adopts an extended boat conformation. Since a folded boat 

conformation of this ring is predicted to be more stable  

in exo TS and less stable in endo TS, π-π aromatic stacking 

between the C20 and the diene are responsible for the TSs 

(Fig. S1). The stability (∆El-g) is useful to evaluate the 

solvent effects for chemical reactions and is consistent with 

the order of ε: ∆Eb-g [14.78] < ∆Ed-g [21.05] < ∆Ee-g [27.33] < 

∆En-g [30.46] < ∆E d′-g [34.92] < ∆Ew-g [36.74 kcal/mol]; also 

the reported ε is: εgas phase [1] < εbenzene [2.2] < εdichloroethane [10.4] 

< εethanol [24.6] < εnitromethane [38.2] < εDMSO [46.7] < εwater 

[78.4] (Fig. 4).  

Moreover, the highest │∆El-g│ is observed in water  

(-36.74 kcal/mol), whereas the lowest │∆El-g│ is 

estimated in C6H6 (-14.78 kcal/mol). These results reveal 

more sensitivity of the stereoselective HDAL to stabilizing 

effects of more polar solvents via dipole-dipole interaction 

and H—bonding than less polar solvents or gas phase. The 

reasons are rather obvious. Firstly, there is a substituted 

pyrrole ring in I diene vertically which generates  

a relatively huge steric hindrance against endo direction of 

C20 dienophile, while this is not in the case exo direction 

of I and C20. Secondly, there is a strong full conjugation 

(ring current) for non-bonding electrons of nitrogen with 

the neighboring carbonyl group of I diene. Because the 

endo isomer possesses a much higher energy than the exo 

isomer, henceforth structural parameter of the TSs imposes 

the stability of TSs and adduct. Interestingly, the dihedral 

angle of H―N and carbonyl group in TSs is about zero 

degree while this angle in adduct is estimated about 

https://en.wikipedia.org/wiki/Materials_science
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Scheme 1: The reported synthesis of 9. 

 

 

→ 

 

+ 

 

Ia  I  C20 
 

Fig. 1: The optimized C20, I and Ia, using DFT—SCRF (self-consistent reaction field). 
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Fig. 2: The energy barrier of exo TS (Eexo

≠) in seven media. 

 

 

 
Fig. 3: The energy barrier of endo TS (Eendo

≠) in seven media. 
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Fig. 4: Comparison of thermodynamic stability of Ia in seven media. 

 

HOMO LUMO 

  

Fig. 5: The FMO (frontier molecular orbital) shapes of Ia, including HOMO-LUMO interaction (the highest occupied  

and the lowest unoccupied molecular orbital, respectively). 

 

ten degree. This may be related to conjugation among  

the C=O and indoline. As said previously, the π-stacking 

is a further obstacle for endo attack. The last key question 

is what diastereomer is produced? Among the expected 

adducts of exo and endo; as two diastereomers, the 

formation of only one of two diastereomers is 

recommended through our theoretical scrutiny. As, the 

endo TS appears thermodynamically less reactive and 

more stable than its exo TS, the formation of the kinetically 

less reactive and more stable exo TS is suggested by reason 

of lack of π-stacking. The electron density (Σρπ) at Bond 

Critical Points (BCPs) of Ia shows a linear correlation 

against the binding energy of ΔE = 724.58 Σρπ + 0.072, 

displaying a reasonable correlation coefficient of r2 (0.950),  

a standard deviation of SD (2.0 kJ/mol) and a strong bound 

complex of Σρπ (0.107). The estimated ΔE for endo TS is 

77.60 kJ/mol, which is attributed to intermolecular BCPs. 

In various media, the structural parameter of Ia including 

point group, bond length, and bond angle is kept, while the 

dihedral angle is relatively modified (Table S1). 

The changed dihedral angles between the substituted 

pyrrole ring and cyclohexene ring; D(10,26,38,39), 

D(10,26,38,40), D(23,26,38,39), D(23,26,38,40), 

D(10,26,38,45), and D(23,26,38,45); indicate, Ia structure 

is more sensitive to solvent effect through H—bonding and 

dipole-dipole interaction. The stereoselectivity of HDAL 

can be adjusted by molecular orbital theory (Fig. 5 and 

Scheme 2) [24-26].  
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Scheme 2: The proposed FMO interactions of C20 with I. 

 

 
Fig. 6: Comparison of kinetic stability of Ia in seven media. 

 

The FMO interaction of C20 dienophile with I diene is 

proposed through the dienophileʼs π1
2-orbital (or HOMO) 

→ the dieneʼs π*
3-orbital (or LUMO), and/or the dieneʼs 

π2
2-orbital (or HOMO) → the dienophileʼs π*2-orbital (or 

LUMO). 

The band gap (∆EL-H in kcal/mol) is calculated to reveal 

the solvent effect on kinetic stabilization of Ia and it is 

inconsistent with the order of ε: ∆EL-H in the gas phase [53.91] 

< ∆EL-H in C6H6 [51.51] < ∆EL-H in C2H4Cl2 [50.85] < ∆EL-

H in EtOH [50.71] < ∆EL-H in MeNO2 [50.03] < ∆EL-H in 

DMSO [49.88] < ∆EL-H in H2O [47.19] (Fig. 6). In going 

from the gas phase to less polar solvent, then in turn to 

more polar solvent; the HOMO energy changes to a greater 

extent than the LUMO energy, thus there is an opposite 

direction between the order of ∆EL-H and order of ε.  

In other words, Ia is expected to be kinetically 

stabilized in the gas phase more than water. We have found 

that the solvent effect and stabilizing effect from gas phase 

to water causes the HOMO energy to decrease by 0.004 a.u.; 

the favorability of this HDAL increases as LUMO energy 

 

IIa 

 

IIIa 
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Fig. 7: Comparison of polarity of Ia in seven media. 

 

decreases, meaning the band gap will be smaller, and 

electron transfer will be easily facilitated. The dipole 

moment (µ) of Ia structure is altered regularly with the 

enlarging polarity of the solvent (Fig. 7).  

Again, the trend of µ / Debye for Ia is increased as:  

µ in the gas phase [3.81] < µ in benzene [4.82] < µ in 

dichloroethane [5.29] < µ in ethanol [5.35] < µ in 

nitromethane [6.08] < µ in DMSO [6.38] < µ in water 

[7.85], which is consistent with the order of ε. Henceforth, 

Ia because it’s the highest µ in water, has the greatest 

affinity and interaction to this solvent. I reactant as one of 

Kekule´ʼs compounds benefits from fully bonding 

resonance and shows a relatively high ∆EL-H in the gas 

phase, while more polar solvent has a relatively low ∆EL-

H, which leads to extremely high chemical reactivity. 

Additionally, shape, size, and values of the MEP of exo 

TS, endo TS, and Ia are charged for the positive sites vs. 

the negative sites, signifying blue color for H atoms and 

red color for other atoms, correspondingly (Fig. S2).  

 

CONCLUSIONS 

The results of DFT—SCRF calculations on the 

optimized (E)-3-1H-pyrrole-2-ylindoline-2-one[20] 

fullerene (Ia) in seven media, show:  

(1) In going from the gas phase to non-polar, then in 

turn to the polar media, a rather good numerical 

consistency occurs between the ε and ∆El-g. Moreover, the 

highest ∆El-g is observed in water (36.74 kcal/mol), 

whereas the lowest value is associated with benzene  

(14.78 kcal/mol). (2) Because of the capability of H—H-

bonding, the stabilizing effect of water is greater than other 

solvents. (3) The band gap and kinetic stability emerge 

inconsistent with ε. (4) The π–π stacking leads to the 

destabilization of endo TS. (5) The dipolar interaction 

between I and polar solvent, leads to stability of exo TS 

and Ia. (6) The order of activation energy in seven media 

is followed: H2O > DMSO > CH3NO2 > C2H5OH > 

C2H4Cl2 > C6H6 > gas phase. (7) The calculated activation 

energy is low and the reaction is proposed to be 

synthetically interesting in the drug delivery field. (8) The 

highest activation energy for endo TS is 9.4 kcal/mol in 

water vs. 5.1 kcal/mol in the gas phase. (9) This is 

necessary for suggesting that only the most kinetically 

stable exo TS for HDAL is in the gas phase. (10) 

Regarding the MEP maps, the surveyed I and C20 are 

appropriately positioned to permit charge transfer between 

themselves. Therefore, the formation of two σ bonds takes 

place so rapidly without zwitterionic or di-radical 

intermediate; this HDAL is concerted and stereoselective, 

predicting only Ia product via stabilization of exo TS. 
 

Supporting Information Available 

The geometrical parameters of Ia, the optimized TSs, 

and their MEPs are presented (5 pages). 
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