Hetero-Diels–Alder Ligation (HDAL) of C20 Nanocage and Anti-Tumor Oxoindoline in Gas Phase and Solvent Phase, Using Density Functional Theory (DFT)

Document Type : Research Article


1 Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN

2 Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, I.R. IRAN

3 Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, I.R. IRAN

4 Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, I.R. IRAN

5 Department of Biochemistry, University of Yuzuncu Yil, 65080, Van, TURKEY


In this computational research, the solvent effect is probed on HDAL of C20 with I to yield Ia compound. So, in going from the gas phase to non-polar, and in turn to the polar solvent, a good consistency appears between the dielectric constant of the solvent (ε) and the released solvation energy (∆El-g). The stability and polarity of Ia appearances are proportional to ε, and the probability of the H-bonding. While the obtained endo-isomer from HDAL is anticipated thermodynamically more stable than exo- analogue; here we found that the formation of exo-isomer is only the obtained product from this HDAL. Subsequently, exo-isomer is more stable than endo-analogue; due to the disappearance of the resulting electronic effect and ring-strain effect from π-stacking between the aromatic rings of I and nanocage. The possibility of HDAL is ruled out by the lowest energy barrier of 5.1 kcal/mol probed for exo Transition State (TS) in the gas phase, while the highest energy barrier of 9.4 kcal/mol is investigated for endo TS in H2O. Hence, the designed HDAL is distinguished as an attractive and promising procedure for ligation in biochemistry due to its higher rate and selectivity in H2O. Fascinatingly, similar to stable C60 nanostructure, exo HDAL of unstable C20 nanostructure with the scrutinized diene can be carried out thermally at room temperature and may be a potential candidate for efficient and selective HDAL in living systems. 


Main Subjects

[1] (a) Azamat J., Poor Heravi M.R., Habibzadeh S., Ebadi A.G., Shoaei S.M., Vessally E., Hetero Diels–Alder Cycloadduct of Anti-Tumor (E)-3-X-indoline-2-thiones with C20 Fullerene as Drug Delivery in Solution vs. Gas Phase: A DFT survey, Inorg. Chem. Commun., 139:109353–109373 (2022).
       (b) Matloubi Moghaddam F., Ghanbari B., Behzadi M., Baghersad M.H., Synthesis of Tetrahydrothiopyrano[2,3–b]indole [60]Fullerene Derivatives via Hetero-Diels–Alder Reaction of C60 and α,β-Unsaturated Indole-2–thiones, J. Heterocycl. Chem., 54:911–915 (2017).
       (c) Klein D., “Organic Chemistry”, Wiley, Hoboken NJ. 783 (2012).
[2] (a) Asnaashariisfahani M., Abdulkareem Mahmood E., Poor Heravi M.R., Habibzadeh S., Ebadi A.G., Mohammadi-Aghdam S., Solvent Effect on Cycloaddition of C20 nanofullerene with Indoline-2-One, at DFT, J. Phys. Org. Chem., 35: e4354–4374 (2022).
       (b) Deguchi S., Alargova R.G., Tsujii K., Stable Dispersions of Fullerenes, C60 and C70, in Water Preparation and Characterization, Langmuir 17: 6013–6017 (2001).
[3] (a) Asnaashariisfahani M., Azizi B., Poor Heravi M.R., Habibzadeh S., Ebadi A.G., Ahmadi S., Stereoselective Cycloaddition of Biologically Active Thioindoline with the Smallest Nanocage in Gas Phase Vs. Solution via DFT, J. Phys. Org. Chem. 35:e4390–4410 (2022).
       (b) Liu Y., Wang H., Liang P., Zhang H.Y., Water-Soluble Supramolecular Fullerene Assembly Mediated by Metallobridged β-cyclodextrins, Angew. Chem. Int. Ed., 43:2690–4 (2004).
[4] (a) Kadhim M.M., Poor Heravi M.R., Mohammadi-Aghdam S., Habibzadeh S., Azizi B., Ebadi A.G., Shoaei S.M., Investigation of Anti-Tumor (E)-3-X-Oxindole via Functionalization of C20 Nano Structure: A DFT Approach, Comput. Theor. Chem. 1214: 113763–113783 (2022).
       (b) Vriens B.E.P.J., Aarts M.J.B., de Vries B., van Gastel S.M., Wals J., Smilde T.J., van Warmerdam L.J.C., de Boer M., van Spronsen D.J., Borm G.F., Tjan-Heijnen V.C.G., Breast Cancer Trialists’ Group of the Netherlands (BOOG), Dox-Orubicin/Cyclophosphamide with Concurrent Versus Sequential Docetaxel as Neoadjuvant Treatment in Patients with Breast Cancer, Eur. J. Cancer, 49: 3102–10 (2013).
       (c) Sanna G., Pestrin M., Zafarana E., Biagioni C., Cavaciocchi D., Turner N., Di Leo A., Biganzoli L., Feasibility and Safety Of Dose-Dense Docetaxel after Conventional Epirubicin and Cyclophosphamide as Adjuvant Treatment for Early Breast Cancer Patients, Breast, 22: 926–932 (2013).
       (d) Thoenes L., Hoehn M., Kashirin R., Ogris M., Arnold G.J., Wagner E., Guenther M., In Vivo Chemo Resistance of Prostate Cancer in Metronomic Cyclophosphamide Therapy, J. Proteomics 73:1342–54 (2010).
[5] (a) Gassman P.G., van Bergen T.J., Gruetzmacher G., Use of Halogen-Sulfide Complexes in the Synthesis of Indoles, Oxindoles, and Alkylated Aromatic Amines, J. Am. Chem. Soc. 95(19): 6508–6509 (1973).
       (b) Gassman P.G., van Bergen T.J., Gilbert P.D., Jr Berkeley W.C., General Method for the Synthesis of Indoles, J. Am. Chem. Soc., 96: 5495–5508 (1974).
       (c) Gassman P.G., van Bergen T.J., Oxindoles New, General Method of Synthesis, J. Am. Chem. Soc. 96(17): 5508–5512 (1974).
[6] (a) Wang Z., Zhang J., DFT Study on Structural, Electronic, and Vibrational Properties of the Highest Oxygenated Fullerene C24O12, Comput. Theor. Chem., 972:20–24 (2011).
       (b) Tachikawa H., Iyama T., Abe S., DFT Study on the Interaction of Fullerene (C60) with Hydroxyl Radical (OH), Phys. Proc., 14:139–142 (2011).
       (c) Barszcz B., Laskowska B., Graja A., Park E.Y., Kim T.-D., Lee K.-S., Electronic Excitations of the Fullerene–Thiophene-Derived Dyads, Syn. Met. 161:229–234 (2011).
[7] Woodard L.C., Li Z., Terrell J., Gerena L., Sanchez L.M., Kyle E.D., Bhattacharjee K.A., Nichols A.D., Ellis W., Prigge T.S., Geyer A.J., Waters N.C., Oxindole-Based Compounds are Selective Inhibitors of Plasmodium Falciparum Cycle Independent Protein Kinases, J. Am. Chem. Soc., 46(18): 3877–3882 (2003).
[8] Cochard F., Laronze M., Prost É., Nuzillard J.-M., Augé F., Petermann C., Sigaut P., Sapi J., Laronze J.-Y., Synthesis of Substituted 1,2,3,4–Tetrahydro-1–thiacarbazole and Spiro[pyrrolidinone-3,3'-indolinones] through a Common Intermediate Obtained by Condensation of Indolin-2–one, (Aryl)aldehydes, and Meldrum’s Acid, Eur. J. Org. Chem., 2002: 3481–3490 (2002).
[9] (a) Taylor R., Walton D.R.M., The Chemistry of Fullerenes, Nature 363: 685–693 (1993).
       (b) Prinzbach H., Weller A., Landenberger P., Wahl F., Worth J., Scott L.T., Gelmont M., Olevano D., Issendorff B., Gas-Phase Production and Photoelectron Spectroscopy of the Smallest Fullerene, C20, Nature, 407: 60–63 (2000).
[11] (a) Haerizade B.N., Ghavami M., Koohi M., Janitabar Darzi S., Rezaee N., Kasaei M.Z., Green Removal
of Toxic Pb(II) from Water by a Novel and Recyclable Ag/γ-Fe2O3@r-GO Nanocomposite
, Iran. J. Chem. Chem. Eng. (IJCCE) 37:29–37 (2018).
       (b) Koohi M., Shariati M., Soleimani Amiri S., A Comparative Study on the Ge6C14 Heterofullerene Nanocages: A Density Functional Survey, J. Phys. Org. Chem. 30: e3678–3687 (2017).
       (d) Ghavami M., Mohammadi R., Koohi M., Kassaee M.Z., Visible Light Photocatalytic Activity of Reduced Graphene Oxidesynergistically Enhanced by Successive Inclusion of γ-Fe2O3, TiO2, and Ag Nanoparticles, Mater. Sci. Semicond. Process., 26: 69-78 (2014).
       (e) Ghavami M., Koohi M., Kassaee M.Z., A Selective Nanocatalyst for an Efficient Ugi Reaction: Magnetically Rcoverable Cu(acac)2/NH2-T/SiO2@Fe3O4 NPs, J. Chem. Sci. 125:1347–1357 (2013).
       (f) Ghavami M., Koohi M., Ahmadi A., Zandi H., Kassaee M.Z., Diastereoselective Synthesis of N-(p-Tosylsulfonyl)-2-Phenylaziridine Over a Novel Magnetically Recyclable Cu(II) Catalyst Accompanied with the N-Inversion Assessment at DFT, Comb. Chem. High. T. Scr. 17:756–762 (2014).
       (g) Koohi M., Kassaee M.Z., Ghavami M., Haerizade B.N., Ahmadi A.A., C20-nGen Heterofullerenes (n = 5 - 10) on focus: A Density Functional Perspective, Monatsh. Chem., 146: 1409–1417 (2015).
       (h) Koohi M., Soleimani Amiri S., Shariati M., Silicon Impacts on Structure, Stability and Aromaticity of C20-nSin heterofullerenes (n = 1 - 10): A Density Functional Perspective, J. Mol. Struct. 1127:522–531 (2017).
[12] (a) Langa F., de la Cruz P., Espı́ldora E., Garcı́a J.J., Pérez M.C., de la Hoz A., Fullerene Chemistry Under Microwave Irradiation, Carbon, 38(11-12): 1641–1646 (2000).
        (b) Wu R., Lu X., Zhang Y., Zhang J., Xiong W.,  Zhu S., Addition Reactions of Fluoroalkanesulfonyl Azides to [60] Fullerene under Thermal or Microwave Irradiation Condition, Tetrahedron 64: 10694–10698 (2008).
        (c) Campisciano V., Riela S., Noto R., Gruttadauria M., Giacalone F., Efficient Microwave-Mediated Synthesis of Fullerene Acceptors for Organic Photovoltaics, RSC Adv. 4(108): 63200–63207 (2014).
        (d) Shariatinia Z., Shahidi S., A DFT Study on the Physical Adsorption of Cyclophosphamide Derivatives on the Surface of Fullerene C60 Nanocage, J. Mol. Graph. Model., 52:71–81 (2014).
[13] (a) Koohi M., Bastami H., Structure, Stability, MEP, NICS, Reactivity, and NBO of Si—Ge Nanocages Evolved from C20 Fullerene at DFT, Monatsh. Chem. – Chem. Month. 151: 693–710 (2020).
        (b) Koohi M., Ghavami M., Haerizade B.N., Zandi H., Kassaee M.Z., Cyclacenes and Short Zigzag Nanotubes with Alternating Ge―C Bonds: Theoretical Impacts of Ge on the Ground State, Strain, And Band Gap, J. Phys. Org. Chem., 27: 735–746 (2014).
        (e) Koohi M., Soleimani Amiri S., Haerizade B.N., Substituent Effect on Structure, Stability and Aromaticity of Novel BnNmC20-(n+m) Heterofullerenes, J. Phys. Org. Chem. 30: e3682–3692 (2017).
        (f) Soleimani-Amiri S., Koohi M., Azizi Z., Characterization of Nonsegregated C17Si3 Heterofullerenic Isomers Using Density Functional Theory Method, J. Chin. Chem. Soc., 65: 1453–1464 (2018).
        (g) Ghavami M., Kassaee M.Z., Mohammadi R., Koohi M., Haerizadeh B.N., Fe2O3@Graphene Oxide as a Novel and Effective Visible Light Photocatalyst for Removal of Rhodamine b from Water, Solid State Sci., 38:143–149 (2014).
        (h) Kassaee M.Z., Buazar F., Koohi M., Heteroatom Impacts on Structure, Stability and Aromaticity of XnC20-n Fullerenes: A Theoretical Prediction, J. Mol. Struct. (THEOCHEM), 940: 19–28 (2010).
[14] (a) Vessally E., Siadati S.A., Hosseinian A., Edjlali L., Selective sensing of Ozone and the Chemically Active Gaseous Species of the Troposphere by Using the C20 Fullerene and Graphene Segment, Talanta 162:505–510 (2017).
        (b) Vessally E., Soleimani–Amiri S., Hosseinian A., Edjlali L, Bekhradnia A., The Hartree–Fock Exchange Effect on the CO Adsorption by the Boron Nitride Nanocage, Physica E, 87:308–311 (2017).
        (c) Vessally E., Esrafili M.D., Nurazar R., Nematollahi P., Bekhradnia A., A DFT Study on Electronic and Optical Properties of Aspirin–Functionalized B12N12 Fullerene–Like Nanocluster, Struct. Chem., 28:735–748 (2017).
        (d) Vessally E., Ahmadi E., Alibabaei S., Esrafili M.D., Hosseinian A., Adsorption and Decomposition of Formaldehyde on the B12N12 Nanostructure: A Density Functional Theory Study, Monatsh. Chem., 148:1727–1731 (2017).
        (e) Nejati K., Hosseinian A., Vessally E., Bekhradnia A., Edjlali L., A Theoretical Study on the Electronic Sensitivity of the Pristine and Al-doped B24N24 Nanoclusters to F2CO and Cl2CO Gases, Struct. Chem., 28:1919–1926 (2017).
        (f) Kareem R.T., Ahmadi S., Rahmani Z., Ebadi A.G., Ebrahimiasl S., Characterization of Titanium Influences on Structure and Thermodynamic Stability of Novel C20-nTin Nanofullerenes (n = 1 - 5): A Density Functional Perspective, J. Mol. Model. 27(6): 176–187 (2021).
[15] (a) Hassanpour A., Youseftabar-Miri L., Delir Kheirollahi Nezhad P., Ahmadi S., Ebrahimiasl S., Kinetic Stability, and NBO Analysis of the C20-nAln Nanocages (n = 1 - 5) using DFT Investigation, J. Mol. Struct. 1233:130079–130095 (2021).
       (b) Hassanpour A., Yasar S., Ebadi A.G., Ebrahimiasl S., Ahmadi S., Thermodynamic Stability, Structural and Electronic Properties for the C20-nAln Heterofullerenes (n = 1 - 5): A DFT study, J. Mol. Model., 27(5): 124–135 (2021).
        (c) Hassanpour A., Delir Kheirollahi Nezhad P., Hosseinian A., Ebadi A.G., Ahmadi S., Ebrahimiasl S., Characterization of IR Spectroscopy, APT Charge, ESP Maps and AIM Analysis of C20 and its C20-nAln Heterofullerene Analogous (n = 1 - 5) Using DFT, J. Phys. Org. Chem. 34(7): e4198–4212 (2021).
        (d) Vessally E., Soleimani–Amiri S., Hosseinian A., Edjlali L., Bekhradnia A., A Comparative Computational Study on the BN Ring Doped Nanographenes, Appl. Surf. Sci., 396: 740–745 (2017).
[16] (a) Becke A.D., Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior, Phys. Rev. A, 38: 3098–3100 (1988).
        (b) Becke A.D., Density‐Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys. 98:5648–5652 (1993).
        (d) Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev. B, 37: 785–789 (1988).
[17] (a) Hariharan P.C., Pople J.A., Accuracy of AHn Equilibrium Geometries by Single Determinant Molecular Orbital Theory, J. Mod. Phys. 27:209–214 (1974).
        (b) Francl M.M., Pietro W.J., Hehre W.J., Binkley J.S., Gordon M.S., DeFrees D.J., Pople J.A., Self-Consistent Molecular Orbital Methods. XXIII. A Polarization-Type Basis Set for Second Row Elements, J. Chem. Phys. 77:3654–3665 (1982).
        (c) Frisch M.J., Pople J.A., Binkley J.S., Self-Consistent Molecular Orbital Methods 25: Supplementary Functions for Gaussian Basis Sets, J. Chem. Phys., 80: 3265–3269 (1984).
        (d) Clark T., Chandrasekhar J., Spitznagel G.W., Schleyer P.v.R., Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. the 3-21+G Set for first-row Elements, Li-F, J. Comput. Chem., 4: 294–301 (1983).
[18] (a) Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A., General Atomic and Molecular Electronic Structure System, J. Comput. Chem., 14(11): 1347–1363 (1993).
        (b) Sobolewski A.L., Domcke W., Ab Initio Investigation of the Structure and Spectroscopy of Hydronium−Water Clusters, J. Phys. Chem. A, 106: 4158–4167 (2002).
[19] (a) Krishan R., Frisch M.J., Pople J.A., Contribution of Triple Substitutions to the Electron Correlation Energy in Fourth Order Perturbation Theory, J. Chem. Phys. 72:4244–4245 (1980).
        (b) Kendall R.A., Jr Dunning T.H., Harrison R.J., Electron Affinities of the First‐Row Atoms Revisited. Systematic Basis Sets and Wave Functions, J. Chem. Phys., 96: 6796–6806 (1992).
[20] (a) Peng C., Schlegel H.B., Combining Synchronous Transit and Quasi-Newton Methods to Find Transition States, Israel. J. Chem. 33:449–454 (1993).
        (b) Peng C., Ayala P.Y., Schlegel H.B., Frisch M.J., Using Redundant Internal Coordinates to Optimize Equilibrium Geometries and Transition States, J. Comput. Chem., 17: 49–56 (1996).
[21] Hehre W.J., Ab Initio Molecular Orbital Theory, Acc. Chem. Res., 9(11): 399–406 (1976).
[22] (a) Liu Q., Qiu L., Wang Y., Lv G., Liu G., Wang S., Lin J., Solvent Effect on Molecular Structure, IR Spectra, Thermodynamic Properties and Chemical Stability of Zoledronic Acid: DFT Study, J. Mol. Model., 22:84–94 (2016).
        (b) Tsuru S., Sharma B., Nagasaka M., Hättig C., Solvent Effects in the Ultraviolet and X‑Ray Absorption Spectra of Pyridazine in Aqueous Solution, J. Phys. Chem. A, 125:7198–7206 (2021).
        (c) Sayyed-Alangi S.Z., Koohi M., Sajjadi-Ghotabadi H., Computational Study of Solvent Effects on Characterizations of (E)-3-X-Indoline-2-thiones Derivatives as Antivirus and Anticancer Compounds, Bull. Korean Chem. Soc. 36:1985–1991 (2015).
        (d) Soleimani-Amiri S., Koohi M., (E)-3-X-indoline-2-Ones as Potent and Selective Inhibitors Against Different Receptor Tyrosine Kinase (RTKs) in Solution vs. Gas Phase, at DFT, J. Phys. Org. Chem. 32(5): e3929–3943 (2019).
[23] (a) Biegler–Kӧnig F., Schönbohm J., Update of the AIM2000-Program for Atoms in Molecules, J. Comp. Chem. 23:1489–1494 (2002).
        (b) Glendening E.D., Reed A.E., Carpenter J.E., Weinhold F., “NBO Version 3.1” Gaussian Inc., Pittsburgh. (2003).
[24] (a) Mohammadi M., Siadati S. A., Ahmadi S., Habibzadeh S., Poor Heravi M.R., Hossaini Z., Vessally E., Carbon Fixation of CO2 via Cyclic Reactions with Borane in Gaseous Atmosphere Leading to Formic Acid (and Metaboric Acid);
A Potential Energy Surface (PES) Study, Front. Chem., 10 (2022).
        (b) Gharibzadeh F., Vessally E., Edjlali L., Es' haghi M., Mohammadi R., A DFT Study on Sumanene, Corannulene and Nanosheet as the Anodes in Li−Ion Batteries, Iran. J. Chem. Chem. Eng. (IJCCE), 39(6): 51-62 (2020).
        (c) Afshar M., Khojasteh R.R., Ahmadi R., Nakhaei Moghaddam M., In Silico Adsorption of Lomustin Anticancer Drug on the Surface of Boron Nitride Nanotube, Chem. Rev. Lett., 4:178−184 (2021).
        (d) Vessally E., Hosseinian A., A Computational Study on the Some Small Graphene-Like Nanostructures as the Anodes in Na−Ion Batteries, Iran. J. Chem. Chem. Eng. (IJCCE), 40(3):6 91-703 (2021).
        (e) Hashemzadeh B., Edjlali L., Delir Kheirollahi Nezhad P., Vessally E., A DFT Studies on a Potential Anode Compound for Li-Ion Batteries: Hexa-Cata-Hexabenzocoronene Nanographen, Chem. Rev. Lett., 4: 232-238 (2021).
        (f) Vessally E., Farajzadeh P., Najaf, E., Possible Sensing Ability of Boron Nitride Nanosheet and Its Al– and Si–Doped Derivatives for Methimazole Drug by Computational Study, Iran. J. Chem. Chem. Eng. (IJCCE), 40(4): 1001-1011 (2021).
        (g) Majedi S., Sreerama L., Vessally E., Behmagham F., Metal-Free Regioselective Thiocyanation of (Hetero) Aromatic C-H Bonds Using Ammonium Thiocyanate: An Overview, J. Chem. Lett., 1: 25-31 (2020).
[25] (a) Salehi N., Vessally E., Edjlali L., Alkorta I., Eshaghi M., Nan@Tetracyanoethylene (n=1-4) Systems: Sodium Salt vs Sodium Electride, Chem. Rev. Lett., 3: 207-217 (2020).
        (b) Soleimani-Amiri S., Asadbeigi N., Badragheh S., A Theoretical Approach to New Triplet and Quintet (nitrenoethynyl) alkylmethylenes,(nitrenoethynyl) alkylsilylenes,(nitrenoethynyl) alkylgermylenes, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 39-52 (2020).
        (c) Sreerama L., Vessally E., Behmagham F., Oxidative Lactamization of Amino Alcohols: An Overview, J. Chem. Lett., 1: 9-18 (2020).
        (d) Norouzi N., Ebadi A. G., Bozorgian A., Vessally E., Hoseyni S. J., Energy and Exergy Analysis of Internal Combustion Engine Performance of Spark Ignition for Gasoline, Methane, and Hydrogen Fuels, Iran. J. Chem. Chem. Eng. (IJCCE), 40(6): 1909-1930 (2021).
        (f) Vessally E., Musavi M., Poor Heravi M.R., A Density Functional Theory Study of Adsorption Ethionamide on The Surface of the Pristine, Si and Ga and Al-Doped Graphene, Iran. J. Chem. Chem. Eng. (IJCCE), 40(6): 1720-1736 (2021).
        (g) Vakili M., Bahramzadeh V., Vakili M., A Comparative study of SCN- adsorption on the Al12N12, Al12P12, and Si and Ge -doped Al12N12 nano-cages to remove from the environment, J. Chem. Lett. 1:172−178 (2020)
        (b) Vessally E., Siadati S.A., Hosseinian A., Edjlali L., Selective Sensing of Ozone and the Chemically Active Gaseous Species of the Troposphere by Using the C20 Fullerene and Graphene Segment, Talanta, 162: 505-510 (2017).
        (c) Norouzi N., Ebadi A. G., Bozorgian A., Hoseyni S.J., Vessally E., Cogeneration System of Power, Cooling, and Hydrogen from Geothermal Energy: An Exergy Approach, Iran. J. Chem. Chem. Eng. (IJCCE), 41(2): 706-721 (2022).
        (d) Rabipour S., Mahmood E.A., Afsharkhas M., A Review on the Cannabinoids Impacts on Psychiatric Disorders, Chem. Rev. Lett., 5: (2022).
        (e) Siadati S.A., Vessally E., Hosseinian A., Edjlali L., Possibility of Sensing, Adsorbing, and Destructing the Tabun-2D-Skeletal (Tabun Nerve Agent) by C20 Fullerene and its Boron and Nitrogen Doped Derivatives, Synthetic Metals, 220: 606-611 (2016).
        (f) Rabipour S., Mahmood E.A., Afsharkhas M., Medicinal Use of Marijuana and Its Impacts on Respiratory System, J. Chem. Lett., 3: 86-94 (2022).