Removal of Mixed Cationic Dyes by a Biosorbent Based on Magnetic Tragacanth Gum Hydrogel

Document Type : Research Article


1 Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. IRAN

2 Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, I. R. IRAN


A magnetic tragacanth gum-grafted poly(acrylic acid) hydrogel (TG-g-PAA/Fe3O4) was applied for the removal of Malachite Green (MG), basic yellow 28 (BY28) and rhodamine 6G (Rh6G) dyes form industrial simulated wastewater. The most important parameters (e.g., initial dye concentrations, adsorbent dosage, pH, and contact time) were optimized in all single, binary, and ternary systems. The adsorption processes were better fitted with the Langmuir model than the Freundlich model which revealed the linearity of the processes. Maximum adsorption capacities (Qm) for MG, BY28, and Rh6G in the ternary system were obtained as 626.5, 568.2, and 459.7 mg/g, respectively. Kinetic studies exhibited that the removal of all dyes in all systems was best fitted with the pseudo-second-order model, which proved the rate-limiting step might be the chemical adsorption. The hydrogel was regenerated by the desorption process after the loading process and reused several times. As a result, the removal efficiency of the adsorbent almost remains the same for the first four cycles.


Main Subjects

[3] Machado F.M., Bergmann C.P., Fernandes T.H., Lima E.C., Royer B., Calvete Faganc T.S.B., Adsorption of Reactive Red M-2BE Dye from Water Solutions by Multi-Walled Carbon Nanotubes and Activated Carbon, J. Hazard. Mater., 192: 1122-1131 (2011).
[4] Machado F.M., Bergmann C.P., Lima E.C., Royer B., de Souza F.E., Jauris I.M., Calveted  T.B., Fagan S., Adsorption of Reactive Blue 4 Dye from Water Solutions by Carbon Nanotubes: Experiment and Theory, Phys. Chem. Chem. Phys., 14: 11139-11153 (2012).
[6] Mohammad-Rezaei R., Khalilzadeh B., Rahimi F., Rezaee P., Shahriar Arab S., Derakhshankhah H., Jaymand M., Simultaneous Removal of Cationic Dyes from Simulated Industrial Wastewater Using Sulfated Alginate Microparticles, J. Molecul. Liquids., 363: 119880 (2022).
[7] Mohammad-Rezaei R., Khalilzadeh B., Rahimi F., Moradi S., Shahlaei M., Derakhshankhah H., Jaymand M., Simultaneous Removal of Cationic and Anionic Dyes from Simulated Industrial Effluents Using a Nature-Inspired Adsorbent, Environ. Res., 214: 113966 (2022).
[8] Zeng H., Yu Z., Shao L., Li X., Zhu M., Liu Y., Feng X., Zhu X., A Novel Strategy for Enhancing the Performance of Membranes for Dyes Separation: Embedding PAA@ UiO-66-NH2 Between Graphene Oxide Sheets, Chem. Eng. J., 403: 126281 (2021).
[9] Wang H., Li Z., Yahyaoui S., Hanafy H., Seliem M.K., Bonilla-Petriciolet A., Luiz G., Lotfi D., QunLia S., Effective Adsorption of Dyes on an Activated Carbon Prepared from Carboxymethyl Cellulose: Experiments, Characterization and Advanced Modelling, Chem. Eng. J., 417: 128116 (2021).
[11] Kiwaan H., Atwee T., Azab E., El-Bindary A., Photocatalytic Degradation of Organic Dyes in the Presence of Nanostructured Titanium Dioxide, J. Molecul. Struc., 1200: 127115 (2020).
[12] Demissie H., An G., Jiao R., Ritigala T., Lu S., Wang D., Modification of High Content Nanocluster-Based Coagulation for Rapid Removal of dye from Water and the Mechanism, Sep. Pur. Technol., 259: 117845 (2021).
[13] Alderete B.L., da Silva J., Godoi R., da Silva F.R., Taffarel S.R., da Silva L.P., Hilario Garciaa A.L., Júniorc H.M., de Amorimd H.L.N., Picadaa J.N. Evaluation of Toxicity and Mutagenicity of a Synthetic Effluent Containing azo dye after Advanced Oxidation Process Treatment, Chemosphere, 263: 128291 (2021).
[14] Lu J., Ayele B.A., Liu X., Chen Q., Electrochemical Removal of RRX-3B in Residual Dyeing Liquid with Typical Engineered Carbonaceous Cathodes,
J. Environ. Manag., 280: 111669 (2021).
[15] Mishra S., Cheng L., Maiti A., The Utilization of Agro-Biomass/Byproducts for Effective Bio-Removal of Dyes From Dyeing Wastewater: A Comprehensive Review, J. Environ. Chem. Eng., 9: 104901 (2021).
[16] Verma M., Tyagi I., Kumar V., Goel S., Vaya D., Kim H., Fabrication of GO–MnO2 Nanocomposite Using Hydrothermal Process for Cationic and Anionic Dyes Adsorption: Kinetics, Isotherm, and Reusability, J. Environ. Chem. Eng., 9: 106045 (2021).
[17] Abdulhameed A.S., Hum N.N.M.F., Rangabhashiyam S., Jawad A.H., Wilson L.D., Yaseen Z.M., Al-Kahtanif A.A., Al-Kahtanif Z.A.A., Statistical Modeling and Mechanistic Pathway for Methylene Blue dye Removal by High Surface Area and Mesoporous Grass-Based Activated Carbon Using K2CO3 Activator, J. Environ. Chem. Eng., 9: 105530 (2021).
[18] Pishnamazi M., Khan A., Kurniawan T.A., Sanaeepur H., Albadarin A.B., Soltani R., Adsorption of Dyes on Multifunctionalized Nano-Silica KCC-1, J. Molecul. Liquids., 338: 116573 (2021).
[19] Usman M., Ahmed A., Yu B., Wang S., Shen Y., Cong H., Simultaneous Adsorption of Heavy Metals and Organic Dyes by β-Cyclodextrin-Chitosan Based Cross-Linked Adsorbent, Carbohyd. Polym., 255: 117486 (2021).
[20] Toumi I., Djelad H., Chouli F., Benyoucef A., Synthesis of PANI@ZnO Hybrid Material and Evaluations in Adsorption of Congo Red and Methylene Blue Dyes: Structural Characterization and Adsorption Performance, J. Inorg. Organometal. Polym. Mater., 32: 112-121 (2022).
[21] Hajiaghababaei L., Ashrafi L., Dehghan Abkenar S., Badiei A., Ganjali MR., Mohammadi Ziarani G., Efficient Removal of Reactive Blue-19 from Textile Wastewater by Adsorption on Methyl Imidazolium Modified LUS-1 and MCM-48 Nanoporous, Int. J. Nano Dimension., 11: 237-247 (2020).
[22] Habibi S., Hajiaghababaei L., Badiei A., Yadavi M., Abkenar S.D., Ganjali M.R., Ziarani G.M., Removal of Reactive Black 5 from Water Using Carboxylic Acid-Grafted SBA-15 Nanorods, Desalin. Water. Treat., 95: 333-341 (2017).
[23] Wang G.Q., Huang J.F., Huang X.F., Deng S.Q., Zheng S.R., Cai S.L., Fan J., Zhanga W.Z., A Hydrolytically Stable Cage-Based Metal–Organic Framework Containing Two Types of Building Blocks for the Adsorption of Iodine and Dyes, Inorg. Chem. Front., 8: 1083-1092 (2021).
[25] Safarzadeh Kozani P., Safarzadeh Kozani P., Hamidi M., Valentine Okoro O., Eskandani M., Jaymand M., Polysaccharide-Based Hydrogels: Properties, Advantages, Challenges, and Optimization Methods for Applications in Regenerative Medicine, Int. J. Polym. Mater. Polym. Biomater., 17: 1319-1333 (2022).
[26] Li P., Wang T., He J., Jiang J., Lei F., Synthesis, Characterization, and Selective dye Adsorption by pH- and Ion-Sensitive Polyelectrolyte Galactomannan-Based Hydrogels, Carbohyd. Polym., 264: 118009 (2021).
[28] Khan S.A., Hussain D., Abbasi N., Khan T.A., Deciphering the Adsorption Potential of a Functionalized Green Hydrogel Nanocomposite for Aspartame from Aqueous Phase, Chemosphere, 289: 133232 (2022).
[29] Soleimani K., Derakhshankhah H., Jaymand M., Samadian H., Stimuli-Responsive Natural Gums-Based Drug Delivery Systems for Cancer Treatment, Carbohyd. Polym., 254: 117422 (2021).
[30] Qi X., Wu L., Su T., Zhang J., Dong W., Polysaccharide-Based Cationic Hydrogels for Dye Adsorption, Colloids Surfaces B., 170: 364-72 (2018).
[31] Pereira A.G.B., Rodrigues F.H.A., Paulino A.T., Martins A.F., Fajardo A.R., Recent Advances on Composite Hydrogels Designed for the Remediation of Dye-Contaminated Water and Wastewater: A Review, J. Clean. Product., 284: 124703 (2021).
[32] Verbeken D., Dierckx S., Dewettinck K., Exudate Gums: Occurrence, Production, and Applications, Appl. Microb. Biotechnol., 63: 10-21 (2003).
[33] Hong K.H., Oh K.W., Kang T.J., Preparation of Conducting Nylon‐6 Electrospun Fiber Webs by the in Situ Polymerization of Polyaniline, J. Appl. Polym. Sci., 96: 983-991 (2005).
[34] Hosseini M.S., Hemmati K., Ghaemy M., Synthesis of Nanohydrogels Based on Tragacanth Gum Biopolymer and Investigation of Swelling and Drug Delivery, Int. J. Biol. Macromol., 82: 806-815 (2016).
[35] Nejatian M., Abbasi S., Azarikia F., Gum Tragacanth: Structure, Characteristics and Applications in Foods, Int. J. Biol. Macromol., 160: 846-860 (2020).
[36] Ghaderi‐Ghahfarokhi M., Yousefvand A., Ahmadi Gavlighi H., Zarei M., Farhangnia P., Developing Novel Synbiotic Low‐Fat Yogurt with Fucoxylogalacturonan from Tragacanth Gum: Investigation of Quality Parameters and Lactobacillus Casei Survival, Food. Sci. Nutrition., 8: 4491-4504 (2020).
[38] Zare E.N., Makvandi P., Tay F.R., Recent Progress in the Industrial and Biomedical Applications of Tragacanth Gum: A Review, Carbohyd. Polym., 212: 450-467 (2019).
[39] Sayadnia S., Arkan E., Jahanban-Esfahlan R., Sayadnia S., Jaymand M., Thermal-Responsive Magnetic Hydrogels Based on Tragacanth Gum for Delivery of Anticancer Drugs, J. Polym. Res., 28: 1-13 (2021).
[40] Sadeghi S., Moghaddam A.Z., Massinaei M., Novel Tunable Composites Based on Bentonite and Modified Tragacanth Gum for Removal of Acid Dyes from Aqueous Solutions, RSC Adv., 5: 55731-55745 (2015).
[44] Zhou Y., Wang Y., Dong S., Hao H., Li J., Liu C., Li X., Tong Y., Phosphate Removal by a La (OH)3 Loaded Magnetic MAPTAC-Based Cationic Hydrogel: Enhanced Surface Charge Density and Donnan Membrane Effect, J. Environ. Sci., 113: 26-39 (2022).
[45] Fazilati A., Mokhtarian N., Latifi A.M., Fazilati M., Synthesis of Acrylic Acid Polymer Hydrogel Nano Fe3O4 to Remove Ammonia from Sugarcane Field Waste, Adv. Mater. Sci. Eng., 9204523: (2020).
[47] Sayadnia S., Arkan E., Jahanban‐Esfahlan R., Sayadnia S., Jaymand M., Tragacanth Gum‐Based pH‐Responsive Magnetic Hydrogels for “Smart” Chemo/Hyperthermia Therapy of Solid Tumors, Polym. Adv. Technol., 32: 262-271 (2021).
[48] Derakhshankhah H., Haghshenas B., Eskandani M., Jahanban-Esfahlan R., Abbasi-Maleki S., Jaymand M., Folate-Conjugated Thermal- and pH-Responsive Magnetic Hydrogel as a Drug Delivery Nano-System for “Smart” Chemo/Hyperthermia Therapy of Solid Tumors, Mater. Today. Commun., 30: 103148 (2022).
[49] Shenvi S.S., Isloor A.M., Ismail A.F., Shilton S.J.,
Al Ahmed A., Humic Acid Based Biopolymeric Membrane for Effective Removal of Methylene Blue and Rhodamine B, Indust. Eng. Chem. Res., 54: 4965-4975 (2015).
[50] Preethi S., Sivasamy A., Sivanesan S., Ramamurthi V., Swaminathan G., Removal of Safranin Basic Dye from Aqueous Solutions by Adsorption onto Corncob Activated Carbon, Indust. Eng. Chem. Res., 45: 7627-7632 (2006).
[51] Vafaei MA., Shakeri A., Salehi H., Razavi SR., Salari N., The Effect of Nanosheets on Polymer Hydrogels Performance in Rhodamine B Dye Removal by Forward Osmosis Process, J. Water. Proces. Eng. 44: 102351 (2021).
[52] Wang W., Wang J., Zhao Y., Bai H., Huang M., Zhang T., Song S., High-Performance Two-Dimensional Montmorillonite Supported-Poly (Acrylamide-Co-Acrylic Acid) Hydrogel for Dye Removal, Environ. Pollution., 257: 113574 (2020).
[55] Bagheri A.R., Ghaedi M., Asfaram A., Hajati S., Ghaedi A.M., Bazrafshan A., Rahimi M.R., Modeling and Optimization of Simultaneous Removal of Ternary Dyes onto Copper Sulfide Nanoparticles Loaded on Activated Carbon Using Second-Derivative Spectrophotometry, J. Taiwan. Institute. Chem. Eng., 65: 212-224 (2016).
[56] Li W., Xie Z., Xue S., Ye H., Liu M., Shi W., Liu Y., Studies on the Adsorption of Dyes, Methylene Blue, Safranin T, and Malachite Green onto Polystyrene Foam. Sep. Pur.Technol., 276: 119435 (2021).
[57] Adebisi A.R., Ayanpeju G.K., Wewers A.F., Oladipo M.A., Removal of Malachite Green from Single and Multi-Dye Aqueous Solutions by Acid-Treated Sawdust, Orient. J. Chem., 35: 1384 (2019).
[58] El Kassimi A., Boutouil A., El Himri M., Laamari M.R., El Haddad M., Selective and Competitive Removal of three Basic Dyes from Single, Binary and Ternary Systems in Aqueous Solutions: A Combined Experimental and Theoretical Study, J. Saudi. Chem. Soc., 24: 527-544 (2020).